
Number Theory by Final Digits

DeVon Herr

November 2018

Contents

1 Introduction 2

2 Simplification and The Language of Remainders 2
2.1 Examples . 4

3 Painting Patterns 4
3.1 Examples . 7

4 Systems and Gazing into the Abyss 7
4.1 Diamonds in the Rough and Modular Multiplicative Inverses . . 10
4.2 A Vanishing Act – Euler’s Totient Theorem 12

5 Examples 15

1

1 Introduction

I initially began writing this as an easy introduction into competition number
theory, specifically that on problems that ask a contestant to find the last digit
of some (often gross) expression. Doing so requires some basic properties of
modular arithmetic, which is not too difficult. However, when the question asks
for increasingly more digits, we will need increasingly more advanced techniques.
When pondering this, I realized that a summary on finding (arbitrarily many)
final digits of expressions actually uses almost all1 of number theory relevant to
lower level competitions.

This is good for multiple reasons; I always find that learning math through
the lens of concrete problems makes the math more easier to understand and
remember. More directly, these problems are the most commonly seen number
theory problems at district meets.

I am still maintaining the goal of being a relatively easy introduction, but
the scope is much greater. While I will make very few assumptions on prior
knowledge to keep this self-contained, I may not go into depth on topics that are
not strictly relevant. I hope you enjoy reading this as much as I did writing it!

2 Simplification and The Language of Remain-
ders

Here’s a simple example.

(My butt in conjunction with RANDOM.ORG)

Find the last digit of

17826 + 74347 + 27478 + 91320.

Okay, calculate the expression and then I’ll tell you the last digit. I’m waiting.
Maybe summing these numbers wasn’t so bad, but what if I gave each number

an additional digit? Or two? Or fifteen? Clearly this method doesn’t scale up
very well, and computing these sums take time anyways. What we want is a
faster method, one that can potentially scale, as well. This is a motivation for
modular arithmetic – the language of remainders.

The idea or technique you may recognize is that since the question only asks
for the last digit of the sum, we can just take the last digits of all the numbers
we’re adding up, take that sum of those digits, and then take the last digit of
that sum. This is “legal” in a sense since the all the other digits that aren’t the
last don’t change the value of the last digit. For instance, 24 + 123 has the last
digit 7 as does 1231234 + 3, even though the two sums have completely different
numbers; their last digits are the same, so the sum should have the same last

1We miss factoring for the most part and much of Diophantine equations.

2

digit as well. In a sense, when asking for the last digit of an expression, we
should only work with the last digits of the numbers involved.

Note that taking the last digit of a number is the same thing as taking
the remainder of the number when divided by 10. And to express a numbers
remainder when divided by another, we introduce an operator known as the
modulus, hence the name modular arithmetic. The syntax of the statement is
as follows; given the verbal statement “a number a, when divided by a number
n, has remainder b:”

a mod (n) = b.

This has the advantage of being significantly quicker than writing the verbal
statement.

Another common statement is to say that two numbers have the same
remainder when divided by a certain number. In this case, it is written as

a ≡ b mod n.

For instance,
9 ≡ 43 mod 17.

Let’s now translate our problem into the language of remainders. We are
asked to compute

17826 + 74347 + 27478 + 91320 mod 10.

Again, since we only care about the last digit of the numbers we are adding
up, we can just add their last digits. And again, the last digit of a number is
the same as its remainder when divided by 10, so

17826 + 74347 + 27478 + 91320 mod 10 ≡ ((17826 mod 10)

+ (74347 mod 10)

+ (27478 mod 10)

+ (91320 mod 10)) mod 10

≡ 6 + 7 + 8 + 0 mod 10

≡ 21 mod 10

= 1.

This demonstrates that if we want to the find the remainder of a sum, all we
have to do is add the remainders together, then take the remainder one final
time at the end. We can say the modulus operator is compatible with addition.

In an actual competition setting, the first line is usually implicit and not
written.

Let’s look at some more examples:

(My butt in conjunction with RANDOM.ORG)

Find the last digit of
4354× 1174.

3

We can rewrite this problem as asking us to compute the product mod 10 or

4354× 1174 mod 10.

Again, since we only care about the last digit of the product, we can look to
take the remainders of our factors, and then multiply those two, then take the
remainder again (just in case).

4354× 1174 mod 10 ≡ ((4354 mod 10)× (1174 mod 10)) mod 10

≡ (4× 4) mod 10

≡ 16 mod 10

= 6.

This goes to show that the modulus operator is compatible with multiplication
as well.

We have to be a bit careful, however, with division and exponentiation. We
will address those in later sections.

2.1 Examples

1. Find the sum of 31 and 148 in modulo 24. (Brilliant Example 3.3)

2. Find the remainder when 123 + 234 + 32 + 56 + 22 + 12 + 78 is divided by
3. (Brilliant Example 3.4)

3. What is (8× 16) mod 7. (Brilliant Example 4.2)

4. Find the remainder when 124 ·134 ·23 ·49 ·235 ·13 is divided by 3. (Brilliant
Example 4.3)

3 Painting Patterns

This a kind of problem you see somewhat frequently,

(Brilliant Example 1.1)

Find the last digit of
7358.

We can continue our simplifying method of only looking at the last digit –
the number’s remainder when divided by 10. The problem then transforms to
computing

7358 mod 10.

Unfortunately, 7 mod 10 = 7, so we can’t really go any further with this.
And the modulus operator doesn’t let us just take 358 mod 10 and replace it.
Remember, exponentiation and division are a bit different; it is only addition
and multiplication that lets us replace things easily.

4

We will have to defer to the fact that exponentiation is repeated multiplication.
To do so, we continuously multiply by 7, take its last digit, then multiply that
by 7 and repeat.

In order to a get a “higher” power of 7, we can multiply a smaller one by 7.
Since we only care about the final digit, we can take the smaller one’s last digit
(or remainder when divided by 10) and multiply that by 7 instead. Then in case
that product is greater than 10, we take that numbers last digit (or remainder
when divided by 10) to get its last digit.

71 mod 10 ≡ 7 mod 10 = 7

72 mod 10 ≡ (7× 71 mod 10) mod 10 ≡ (7× 7) mod 10 = 9

73 mod 10 ≡ (7× 72 mod 10) mod 10 ≡ (7× 9) mod 10 = 3

74 mod 10 ≡ (7× 73 mod 10) mod 10 ≡ (7× 3) mod 10 = 1

75 mod 10 ≡ (7× 74 mod 10) mod 10 ≡ (7× 1) mod 10 = 7

A lot of the calculation above is unnecessary, and exists only to be thorough.
For instance, the third line can be simplified as

73 mod 10 ≡ 7× 3 mod 10 = 1 mod 10,

or even
73 ≡ 1 mod 10

Wait a minute! We already calculated 7 × 7 mod 10, and we know its 9.
And then we see we also already calculated 9× 7 mod 10 to be 3. A pattern
emerges; it starts over once the final digit hits 1. It seems that the final digits of
powers of 7 cycle through a set of four numbers, or

Powers of 7 mod 10 ∈ {7, 9, 3, 1}.

So we know that the last digit of 7358 will be either 7, 9, 3 or 1. We’ve
narrowed it down a little bit, but we can do better. We know that it’ll be 7, 9,
3 or 1, but which one? We will utilize the fact that the final digits aren’t just
randomly chosen from the set, no, the final digits cycle.

Let’s pair the exponent with the final digit. The final digit of 71 is 7, 72 is 9,
73 is 3 and 74 is 1. Putting this in table form yields the following.

5

Exponent of 7k 7k mod 10
1 7
2 9
3 3
4 1
5 7
6 9
7 3
8 1
...

...

Note that it goes in a period of 4; every 4 exponents, the pattern starts over
again. Taking a closer look, if the exponent is a multiple of 4, the final digit of
7k is 1. Using this logic, if the exponent is 1 greater than a multiple of 4, the
final digit of 7k is 7; if the exponent is 2 greater than a multiple of 4, the final
digit of 7k is 9 and so on. So we can generalize this table:

Exponent of 7k 7k mod 10
k is a multiple of 4 + 0 1
k is a multiple of 4 + 1 7
k is a multiple of 4 + 2 9
k is a multiple of 4 + 3 3

We can then further simplify the “k is a multiple of 4 + something” through
modular arithmetic. Note that if a number is a multiple of 4, its remainder when
divided by 4 should be 0. Likewise, if a number is greater than a multiple of 4
by 1, its remainder when divided by 4 should be 1 and so on. Using this logic,
we can further simplify the table.

Exponent of 7k 7k mod 10
k ≡ 0 mod 4 1
k ≡ 1 mod 4 7
k ≡ 2 mod 4 9
k ≡ 3 mod 4 3

All that’s left is to find what the exponent of 7358 is mod 4. By division,
358 ≡ 2 mod 10, which says 7358 mod 10 = 9 making its final digit 9. And we
are done.

Again, in a competition setting most of the calculations and formatting done
here is unnecessary and impractical. For a question like this, I would write a
list of the last digits of powers of 7 starting from 1, and writing the exponent
below. From there I would mentally note the pattern, then find the remainder
of the expression modulo 4. My work might look something like this. Things in
parenthesis are things I do not write down, but I have included here so the work
makes sense.

6

(Exponent of 7k) (7k mod 10)
1 7
2 9
3 3
4 1

358 ≡ 2 mod 10→ 9.

I don’t go further because we can simply assume that things tend to cycle
when it hits 1.

I initially tried to Google 7358 and then show its last digit to show that we
are correct, but this is a number with

⌊
log10

(
7358

)⌋
= 302 digits, so you’ll just

have to trust me on this one.

3.1 Examples

1. Find the last digit of 22016. (Brilliant Example 1.2)

2. Consider a number 3n where n is a positive integer.

If n = 2016, the last digit of 3n is a.

If n = 9018, the last digit of 3n is b.

What is a+ b? (Brilliant Try It Yourself 1.2)

3. Find the last digit of 1717. (Brilliant Example 1.3)

4 Systems and Gazing into the Abyss

Finding the last digit of most expressions is fairly straightforward due to the fact
that computing things mod 10 isn’t too bad; we can just do a couple of brute
force calculations and then find the pattern. However, this is not so easy when
we no longer look for only the last digit. When we look for the last n digits, we
have to use a new chest of tricks.

(Brilliant Example 3.1)

Find the last two digits of
74540.

This is equivalent to finding

74540 mod 100.

Actually finding it, however, might take a bit more effort.
Our process of repeatedly taking 74k mod 100 here isn’t going to work

because constantly multiplying a number by 74 is awful, even if we only care
about the last two digits.

7

So clearly taking the remainder when dividing by 100 isn’t an option, so
maybe we should look for remainders when dividing by more reasonable numbers.
We can’t just pick numbers haphazardly we should pick our divisors to be
numbers that are “part” of 100, so we can combine our remainders in the end
someway. Since the modulus is intimately connected with multiplication and
division, we should pick numbers that multiply together to yield 100. As

100 = 22 · 52,

it would make perfect sense to use 22 = 4 and 52 = 25. Indeed, calculating the
remainder of a number when divided by 4 and 25 is much less painful than the
remainder when divided by 100.

So we look to find
74540 mod 4

and
74540 mod 25.

Finding 74540 mod 4 isn’t too bad. Noting that 74 mod 4 = 2, this reduces
to finding 2540 mod 4.

We note that we are now interested in looking at the remainder of powers of
2 when divided by 4. This uses the exact same process as that of finding final
digits except we can’t just extract the final digit; we have to take the remainder
when divided by 4.

21 mod 4 = 2

22 mod 4 = 0

23 mod 4 = 0.

Well, multiplying another number by 0 is, well, zero by the zero product
property of multiplication, so we see that any power of 2 with an exponent
greater than 1 has remainder of 0 modulo 4. 2

So now that we know 74540 mod 4 = 0, we now have to compute 74540

mod 25.
By noting that 74 mod 25 = 24 mod 25, this simplifies (though not by

much...) to finding 24540 mod 25.
We can make this simpler still by taking advantage of the fact that adding

(or subtracting!) a multiple to a number does not change the remainder. That
is, if

43 ≡ 20 mod 23,

adding 20 shouldn’t change the remainder, or

43 + 20 mod 23 ≡ 20.

2We can also show this by noting that any power of two starting from 2 is a multiple of 4,
so it has to have remainder 0 when divided by 4.

8

So we subtract 25 to get

24540 mod 25 ≡ (−1)540 mod 25.

We can justify this by saying that a number being 24 greater than a multiple of
25 is the same thing as saying its 1 less than a multiple of 25.

Repeating the process of repeatedly taking the exponent of our base modulo
a number, we see that

(−1)1 = mod 25 = −1

(−1)2 = mod 25 = 1.

So the powers of (-1) modulo 25 go in the cycle {−1, 1}. By noting 540
mod 2 = 0, we get that 74540 mod 25 = 1.

Putting these two statements give us a system of linear congruences. If
the last two digits of 74540 are some number x, we can express this by saying

x ≡ 0 mod 4

≡ 1 mod 25.

Sometimes this can be written as

x ≡

{
0 mod 4

1 mod 25.

This should look familiar to a system of (linear) equations to you. We will
use an essentially modified version of substitution to solve this system.

The first question we should ask is if a solution to the system exists. Just
like how in a system of (linear) equations, solutions may not exist, there may
not always be a solution to a system of linear congruences. While the checking
process is usually somewhat involved, we can just use the existence criterion
of The Chinese Remainder Theorem: if the system of linear congruences
have co-prime divisors, a solution has to exist.

Since 4 and 25 are co-prime, a solution has to exist.3

We can do a list search by means of listing all solutions to x ≡ 1 mod 25
(26, 51, 76, 1) and looking for one that has remainder 0 when divided by 4, but
there exists an analytic approach, as well.

We proceed by iterative substitution, statement by statement, starting with
the first one, namely x ≡ 0 mod 4. Verbally, we can translate this to mean that
the number x has remainder 0 when divided by 4. Since multiples of 4 have
remainder 0 when divided by 4, we can then conclude x is a multiple of 4, which
means that its 4 times some integer or

x = 4k; k ∈ Z.
3A more hand-wavy justification is that literally any number has to have final digits, so a

solution has to exist.

9

We can then substitute this x = 4k identity into our system of linear
congruences, namely x ≡ 1 mod 25 which precipitates

4k ≡ 1 mod 25; k ∈ Z.

We want to solve for k; our first thought should be to multiply both sides of
the equation by 1

4 , but the statement 1
4 mod 25 doesn’t even make sense. For

relatively small numbers (4 and 25), we can keep adding 25 to both sides (which
doesn’t change the value) until the right hand side is divisible by 4 and then
dividing both sides by 4. 4 This is terrible for larger numbers because we might
have to add the modulus many, many times and so we will again have to learn
new techniques to make this process less arduous.

4.1 Diamonds in the Rough and Modular Multiplicative
Inverses

Currently we have that
4k ≡ 1 mod 25.

We want to find a way to “divide by 4” such that we can get that k is equal
to some other integer modulo 25, or

k ≡ m mod 25; k,m ∈ Z.

By some advanced mathematics, we note that if the number and the divisor
are co-prime, we can “invert” this multiplication. In this example, since 4 and 25
are co-prime, we are able to invert the multiplication by 4 to isolate k. The way
we do it is to multiply both sides by a special number that inverts multiplication
aptly named the modular multiplicative inverse.

That is, if we have the expression

a ≡ b mod n,

we define the modular multiplicative inverse a−1 such that(
a · a−1

)
mod n = 1,

which exists if and only if a and n share no common factors, or

gcd (a, n) = 1.

We will find the modular multiplicative inverse by what is known as the
extended Euclidean algorithm, which of course begins with the regular
Euclidean Algorithm.

We start with our two numbers, in this case 4 and 25. We will the larger
number by the smaller one to get a quotient and a remainder. We then divide

4In this case, you add 25 thrice to get 4k + 75 ≡ 1 + 75 mod 25 which becomes 4k ≡ 76
mod 25 which then, once divided, becomes k ≡ 19.

10

the divisor with the remainder, then repeat until the remainder is 0. It is best
explained with an example. First we divide 25 by 4. This yields

25 = 6(4) + 1.

We then divide the divisor (4) by the remainder (1).

4 = 4(1) + 0.

Since the final remainder is 0, our algorithm is complete. We note the last
number inside the parenthesis as the greatest common divisor, which verifies our
observation that gcd(25, 4) = 1.

In cases where the algorithm takes multiple steps, we iterate and keep
replacing the number to be divided by the number inside the parenthesis and
divide it by the remainder until we the remainder is 0, at which point the final
number inside the parenthesis is the greatest common divisor.

We now use Bezout’s Identity which says that for any two integers, we
can express their greatest common divisor as a linear combination of the two
integers. That is, given two numbers a and b,

ax+ by = gcd(a, b); a, b, x, y ∈ Z.

In our case, our equation is given by

4x+ 25y = 1; x, y ∈ Z.

If gcd(a, b) = 1, then x is the modular multiplicative inverse of a modulo b,
which is what we’re looking for. To actually find x and this linear combination,
we look to use the steps we created in finding the gcd.

We take the “step” that has remainder 1, in this case 25 = 6(4) + 1 and solve
for the remainder. Here, the process is straightforward and we get

1 = 25− 6(4).

or
−6(4) + 1(25) = 1.

Which tells us that the modular multiplicative inverse of 4 modulo 25 is −6.
In instances where it takes more steps, one has to continuously back substitute

more expressions for the remainder until we “have” both relevant numbers. In
those cases, too, the simplification process will also take longer.

Again, recall that the modular multiplicative inverse of an integer modulo
another one is where the product of the two evaluates to 1. As such, we multiply
both parts of the linear congruence 4k = 1 mod 25 by −6, which turns the left
side to 1 times k. Doing so gives us

(−6 · 4)k = 1 · −6 mod 25

k = −6 mod 25

k + 25 = −6 + 25 mod 25

k = 19 mod 25

11

We can then rewrite the final statement as saying that k is 19 greater than
some multiple of 25, or

k = 25l + 19; l ∈ Z.

Recall pages ago we described the solution x as being four times k or x = 4k.
Combining these two statements yields

x = 4(25l + 19); l ∈ Z
= 100l + 76; l ∈ Z.

This is equivalent to saying x is 76 greater than an integer multiple of 100.
Letting l = 0 gives that x = 0 + 76 = 76, which finishes the problem.5

Also note that finding a multiplicative modular inverse is usually unnecessary
for finding the last two digits of some expression, as one usually doesn’t have to
check more than three cases. In cases where it’s four digits or greater, it’s more
practical to do so.

4.2 A Vanishing Act – Euler’s Totient Theorem

We got lucky in a way; the patterns of powers of negative 1 are really easy to
work with. In certain instances, it may not be as easy.

(Brilliant Example 4.1)

Find the last two digits of
3342.

It should probably be second nature to note that this problem is logically
equivalent to finding

3342 mod 100.

Following the procedure the section before would suggest to break the calcu-
lation into solving a system of linear congruences, but this forces us to find 1742

mod 25 which isn’t easy to calculate whatsoever. In this case (and actually most
cases, from now on), we look to simplify the exponent, too, as much as we can
before breaking out a system.

First, we define Euler’s totient function, φ(n), as the number of integers
less than n that are co-prime to n. Listing numbers is really gross when n is
large, so we use what’s known as Euler’s product formula

φ(n) = n×
(

1− 1

p1

)(
1− 1

p2

)
. . .

(
1− 1

p3

)
,

5We can also observe that the last two digits of a number should not ever exceed 100 or
ever be negative.

12

where p1, p2, . . . , p3 are the unique prime factors of n.6 Another formulation is
given by

φ(n) = n×
(
p1 − 1

p1

)(
p2 − 1

p2

)
. . .

(
pn − 1

pn

)
,

which can be shown by algebraically manipulating terms in Euler’s product
formula.

With that out of the way, we have Euler’s totient theorem which states
that if given two integers a and n co-prime,

aφ(n) ≡ 1 mod n.

Although the ≡ 1 mod n looks tempting to transform the expression into
one that yields a modular multiplicative inverse, doing so is usually slower than
using the extended Euclidean algorithm.

Noting that the problem has us work in mod 100, we should then calculate
φ(100), which is given by

φ(100) = 100

(
1

2

)(
4

5

)
= 40.

Then, by Euler’s totient theorem,

3340 ≡ 1 mod 100.

This helps a bit. By exponent rules 3342 = 3340+2, so 3342 = 3340 · 332. Putting
this altogether,

3342 mod 100 = 3340 × 332 mod 100

= 1× 332 mod 100

≡ 332 mod 100.

This is much easier as all we have to do now is compute 332 mod 100 which
comes out to be 1089 mod 100, or 89. This finishes the problem.

Euler’s totient theorem works to reduce the exponent, but sometimes alone is
insufficient for much larger exponents, where we have exponents in the exponent
itself. In these cases, we may have to use Euler’s totient theorem multiple times.

(Brilliant Example 4.2)

Find the last three digits of

42
43

.

This is the same as
42

42

mod 1000.
6This can be proved through the inclusion-exclusion principle and fundamental theorem of

arithmetic.

13

While we may be tempted to immediately apply Euler’s totient theorem
to attack the exponent, we are unable to as 4 and 1000 are not co-prime. We
proceed by introducing a system right away to address this.

We have
42

42

≡ 0 mod 8,

and now we have to find
42

42

mod 125

before solving the system as a whole. And here, since 4 and 125 are co-prime,
we can make use of Euler’s totient theorem. As we are working modulo 125, we
calculate φ(125) = 100, so 4100 ≡ 1 mod 125.

This doesn’t initially seem to be helpful, as 4100 is a far cry from 42
43

. Our
saving grace is to take the exponent, 243, modulo 100. Why? Note that if we
can somehow rewrite 243 as some multiple of 100 plus some remainder, we can
“throw out” the multiple of 100 as it equates to

4100n mod 125→ (1)n mod 125 = 1.

So now we are interested in finding

242 mod 100.

Formally speaking, we should break out a system to solve this. This goes
pretty quickly, as we know that 243 ≡ 0 mod 4, and all that’s left is to find 243

mod 25. Using Euler’s totient theorem again, we find that

242 mod 25 = (220)2 · 22 mod 25 = 4 mod 25.

We know the system

x ≡

{
4 mod 25

0 mod 4

has a solution by the Chinese remainder theorem, and is given by x = 4 mod 100.
Now we can start digging our way out of the hole. From here, we know that
243 ≡ 4 mod 100, so

42
43

mod 125 ≡ (4100)something × 44 mod 125

≡ 1something × 256 mod 125

≡ 256 mod 125

≡ 6 mod 125.

Combining this and 0 mod 8 has a solution, namely 256 mod 1000, making
the last three digits 256, which solves the problem.

14

5 Examples

1. What are the last three digits of 123456? (Brilliant Try it Yourself 7.1)

2. Find the last four digits of 1444144
4

(Brilliant Try it Yourself 7.2)

3. Find the last two digits of 29999929999
2999299

292

. (Brilliant Try it Yourself
7.4)

References

[1] Finding the last digit of a power. https://brilliant.org/wiki/

finding-the-last-digit-of-a-power. Accessed: 2018-11-13.

[2] Modular arithmetic. https://brilliant.org/wiki/modular-arithmetic.
Accessed: 2018-11-15.

[3] Euler’s theorem. https://en.wikipedia.org/wiki/Euler%27s_theorem.
Accessed: 2018-11-15.

[4] Euler’s totient function. https://en.wikipedia.org/wiki/Euler%27s_

totient_function. Accessed: 2018-11-15.

[5] Modular arithmetic. https://en.wikipedia.org/wiki/Modular_

arithmetic. Accessed: 2018-11-14.

15

https://brilliant.org/wiki/finding-the-last-digit-of-a-power
https://brilliant.org/wiki/finding-the-last-digit-of-a-power
https://brilliant.org/wiki/modular-arithmetic
https://en.wikipedia.org/wiki/Euler%27s_theorem
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Euler%27s_totient_function
https://en.wikipedia.org/wiki/Modular_arithmetic
https://en.wikipedia.org/wiki/Modular_arithmetic

	Introduction
	Simplification and The Language of Remainders
	Examples

	Painting Patterns
	Examples

	Systems and Gazing into the Abyss
	Diamonds in the Rough and Modular Multiplicative Inverses
	A Vanishing Act – Euler's Totient Theorem

	Examples

