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Preface

Information geometry is a method of exploring the world of information by means
of modern geometry. Theories of information have so far been studied mostly by
using algebraic, logical, analytical, and probabilistic methods. Since geometry
studies mutual relations between elements such as distance and curvature, it should
provide the information sciences with powerful tools.

Information geometry has emerged from studies of invariant geometrical
structure involved in statistical inference. It defines a Riemannian metric together
with dually coupled affine connections in a manifold of probability distributions.
These structures play important roles not only in statistical inference but also in
wider areas of information sciences, such as machine learning, signal processing,
optimization, and even neuroscience, not to mention mathematics and physics.

It is intended that the present monograph will give an introduction to information
geometry and an overview of wide areas of application. For this purpose, Part I
begins with a divergence function in a manifold. We then show that this provides
the manifold with a dually flat structure equipped with a Riemannian metric.
A highlight is a generalized Pythagorean theorem in a dually flat information
manifold. The results are understandable without knowledge of differential
geometry.

Part II gives an introduction to modern differential geometry without tears. We
try to present concepts in a way which is intuitively understandable, not sticking to
rigorous mathematics. Throughout the monograph, we do not pursue a rigorous
mathematical basis but rather develop a framework which gives practically useful
and understandable descriptions.

Part III is devoted to statistical inference, where various topics will be found,
including the Neyman–Scott problem, semiparametric models, and the EM algo-
rithm. Part IV overviews various applications of information geometry in the fields
of machine learning, signal processing, and others.

Allow me to review my own personal history in information geometry. It was in
1958, when I was a graduate student on a master’s course, that I followed a seminar
on statistics. The text was “Information Theory and Statistics” by S. Kullback, and
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a professor suggested to me that the Fisher information might be regarded as a
Riemannian metric. I calculated the Riemannian metric and curvature of the
manifold of Gaussian distributions and found that it is a manifold of constant
curvature, which is no different from the famous Poincaré half-plane in
non-Euclidean geometry. I was enchanted by its beauty. I believed that a beautiful
structure must have important practical significance, but I was not able to pursue its
consequences further.

Fifteen years later, I was stimulated by a paper by Prof. B. Efron and accom-
panying discussions by Prof. A.P. Dawid, and restarted my investigation into
information geometry. Later, I found that Prof. N.N. Chentsov had developed a
theory along similar lines. I was lucky that Sir D. Cox noticed my approach and
organized an international workshop on information geometry in 1984, in which
many active statisticians participated. This was a good start for information
geometry.

Now information geometry has been developed worldwide and many symposia
and workshops have been organized around the world. Its areas of application have
been enlarged from statistical inference to wider fields of information sciences.

To my regret, I have not been able to introduce many excellent works by other
researchers around the world. For example, I have not been able to touch upon
quantum information geometry. Also I have not been able to refer to many
important works, because of my limited capability.

Last but not least, I would like to thank Dr. M. Kumon and Prof. H. Nagaoka,
who collaborated in the early period of the infancy of information geometry. I also
thank the many researchers who have supported me in the process of construction
of information geometry, Profs. D. Cox, C.R. Rao, O. Barndorff-Nielsen, S.
Lauritzen, B. Efron, A.P. Dawid, K. Takeuchi, and the late N.N. Chentsov, among
many many others. Finally, I would like to thank Ms. Emi Namioka who arranged
my handwritten manuscripts in the beautiful TEX form. Without her devotion, the
monograph would not have appeared.

April 2015 Shun-ichi Amari

The original version of the book was revised: Author-provided belated
corrections have been incorporated. The correction to the book is available at
https://doi.org/10.1007/978-4-431-55978-8_14
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Part I
Geometry of Divergence Functions: Dually

Flat Riemannian Structure



Chapter 1
Manifold, Divergence and Dually
Flat Structure

The present chapter begins with a manifold and a coordinate system within it. Then,
a divergence between two points is defined. We use an intuitive style of explanation
for manifolds, followed by typical examples. A divergence represents a degree of
separation of two points, but it is not a distance since it is not symmetric with respect
to the two points. Here is the origin of dually coupled asymmetry, leading us to a
dual world. When a divergence is derived from a convex function in the form of
the Bregman divergence, two affine structures are induced in the manifold. They are
dually coupled via the Legendre transformation. Thus, a convex function provides a
manifold with a dually flat affine structure in addition to a Riemannian metric derived
from it. The dually flat structure plays a pivotal role in information geometry, as is
shown in the generalized Pythagorean theorem. The dually flat structure is a special
case of Riemannian geometry equipped with non-flat dual affine connections, which
will be studied in Part II.

1.1 Manifolds

1.1.1 Manifold and Coordinate Systems

An n-dimensional manifold M is a set of points such that each point has n-
dimensional extensions in its neighborhood. That is, such a neighborhood is topo-
logically equivalent to an n-dimensional Euclidean space. Intuitively speaking, a
manifold is a deformed Euclidean space, like a curved surface in the two-dimensional
case. But it may have a different global topology. A sphere is an example which is
locally equivalent to a two-dimensional Euclidean space, but is curved and has a
different global topology because it is compact (bounded and closed).

The original version of this chapter was revised: The incomplete texts have been updated.
The correction to this chapter is available at https://doi.org/10.1007/978-4-431-55978-8_14
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M

ξ2

ξ1

ξ2

ξ1

E2

Fig. 1.1 Manifold M and coordinate system ξ. E2 is a two-dimensional Euclidean space

Since a manifold M is locally equivalent to an n-dimensional Euclidean space
En , we can introduce a local coordinate system

ξ = (ξ1, . . . , ξn) (1.1)

composed of n components ξ1, . . . , ξn such that each point is uniquely specified by
its coordinates ξ in a neighborhood. See Fig. 1.1 for the two-dimensional case. Since
a manifold may have a topology different from a Euclidean space, in general we
need more than one coordinate neighborhood and coordinate system to cover all the
points of a manifold.

The coordinate system is not unique even in a coordinate neighborhood, and there
are many coordinate systems. Let ζ = (ζ1, . . . , ζn) be another coordinate system.
When a point P ∈ M is represented in two coordinate systems ξ and ζ, there is a
one-to-one correspondence between them and we have relations

ξ = f (ζ1, . . . , ζn) , (1.2)

ζ = f −1 (ξ1, . . . , ξn) , (1.3)

where f and f −1 are mutually inverse vector-valued functions. They are a coordinate
transformation and its inverse transformation. We usually assume that (1.2) and (1.3)
are differentiable functions of n coordinate variables.1

1Mathematically trained readers may know the rigorous definition of a manifold: A manifold M
is a Hausdorff space which is covered by a number of open sets called coordinate neighborhoods,
such that there exists an isomorphism between a coordinate neighborhood and a Euclidean space.
The isomorphism defines a local coordinate system in the neighborhood. M is called a differen-
tiable manifold when the coordinate transformations are differentiable. See textbooks on modern
differential geometry. Our definition is intuitive, not mathematically rigorous, but is sufficient for
understanding information geometry and its applications.
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1.1.2 Examples of Manifolds

A. Euclidean Space

Consider a two-dimensional Euclidean space, which is a flat plane. It is convenient
to use an orthonormal Cartesian coordinate system ξ = (ξ1, ξ2). A polar coordinate
system ζ = (r, θ) is sometimes used, where r is the radius and θ is the angle of a
point from one axis (see Fig. 1.2). The coordinate transformation between them is
given by

r =
√

ξ2
1 + ξ2

2 , θ = tan−1

(
ξ2

ξ1

)
, (1.4)

ξ1 = r cos θ, ξ2 = r sin θ. (1.5)

The transformation is analytic except for the origin.

B. Sphere

A sphere is the surface of a three-dimensional ball. The surface of the earth is regarded
as a sphere, where each point has a two-dimensional neighborhood, so that we can
draw a local geographic map on a flat sheet. The pair of latitude and longitude
gives a local coordinate system. However, a sphere is topologically different from
a Euclidean space and it cannot be covered by one coordinate system. At least two

Fig. 1.2 Cartesian
coordinate system
ξ = (ξ1, ξ2) and polar
coordinate system (r, θ)
in E2

r
θ

ξ2

ξ1

E2
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coordinate systems are required to cover it. If we delete one point, say the north pole
of the earth, it is topologically equivalent to a Euclidean space. Hence, at least two
overlapping coordinate neighborhoods, one including the north pole and the other
including the south pole, for example, are necessary and they are sufficient to cover
the entire sphere.

C. Manifold of Probability Distributions

C1. Gaussian Distributions

The probability density function of Gaussian random variable x is given by

p
(
x;μ,σ2

) = 1√
2πσ

exp

{
− (x − μ)2

2σ2

}
, (1.6)

where μ is the mean and σ2 is the variance. Hence, the set of all the Gaussian
distributions is a two-dimensional manifold, where a point denotes a probability
density function and

ξ = (μ,σ), σ > 0 (1.7)

is a coordinate system. This is topologically equivalent to the upper half of a two-
dimensional Euclidean space. The manifold of Gaussian distributions is covered by
one coordinate system ξ = (μ,σ).

There are other coordinate systems. For example, let m1 and m2 be the first and
second moments of x , given by

m1 = E[x] = μ, m2 = E
[
x2

] = μ2 + σ2, (1.8)

where E denotes the expectation of a random variable. Then,

ζ = (m1, m2) (1.9)

is a coordinate system (the moment coordinate system).
It will be shown later that the coordinate system defined by θ,

θ1 = μ

σ2
, θ2 = − 1

2σ2
, (1.10)

is referred to as the natural parameters, and is convenient for studying properties of
Gaussian distributions.
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C2. Discrete Distributions

Let x be a discrete random variable taking values on X = {0, 1, . . . , n}. A probability
distribution p(x) is specified by n + 1 probabilities

pi = Prob{x = i}, i = 0, 1, . . . , n, (1.11)

so that p(x) is represented by a probability vector

p = (p0, p1, . . . , pn) . (1.12)

Because of the restriction
n∑

i=0

pi = 1, pi > 0, (1.13)

the set of all probability distributions p forms an n-dimensional manifold. Its coor-
dinate system is given, for example, by

ξ = (p1, . . . , pn) (1.14)

and p0 is not free but is a function of the coordinates,

p0 = 1 −
∑

ξi . (1.15)

The manifold is an n-dimensional simplex, called the probability simplex, and is
denoted by Sn . When n = 2, S2 is the interior of a triangle and when n = 3, it is the
interior of a 3-simplex, as is shown in Fig. 1.3.

p
0

p
1

p
2

S2

S3

p
0

p
1

p
2

p
3

Fig. 1.3 Probability simplex: S2 and S3
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Let us introduce n + 1 random variables δi (x), i = 0, 1, . . . , n, such that

δi (x) =
{

1, x = i,
0, x �= i.

(1.16)

Then, a probability distribution of x is denoted by

p(x, ξ) =
n∑

i=1

ξiδi (x) + p0(ξ)δ0(x) (1.17)

in terms of coordinates ξ.
We shall use another coordinate system θ later, given by

θi = log
pi

p0
, i = 1, . . . , n, (1.18)

which is also very useful.

C3. Regular Statistical Model

Let x be a random variable which may take discrete, scalar or vector continuous
values. A statistical model is a family of probability distributions M = {p(x, ξ)}
specified by a vector parameter ξ. When it satisfies certain regularity conditions, it is
called a regular statistical model. Such an M is a manifold, where ξ plays the role of
a coordinate system. The family of Gaussian distributions and the family of discrete
probability distributions are examples of the regular statistical model. Information
geometry has emerged from a study of invariant geometrical structures of regular
statistical models.

D. Manifold of Positive Measures

Let x be a variable taking values in set N = {1, 2, . . . , n}. We assign a positive
measure (or a weight) mi to element i, i = 1, . . . , n. Then

ξ = (m1, . . . , mn) , mi > 0 (1.19)

defines a distribution of measures over N . The set of all such measures sits in the
first quadrant Rn

+ of an n-dimensional Euclidean space. The sum

m =
n∑

i=1

mi (1.20)

is called the total mass of m = (m1, . . . , mn).
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When m satisfies the constraint that the total mass is equal to 1,

∑
mi = 1, (1.21)

it is a probability distribution belonging to Sn−1. Hence, Sn−1 is included in Rn
+ as

its submanifold.
A positive measure (unnormalized probability distribution) appears in many engi-

neering problems. For example, image s(x, y) drawn on the x–y plane is a positive
measure when the brightness is positive,

s(x, y) > 0. (1.22)

When we discretize the x–y plane into n2 pixels (i, j), the discretized pictures
{s(i, j)} form a positive measure belonging to Rn2

+ . Similarly, when we consider
a discretized power spectrum of a sound, it is a positive measure. The histogram of
observed data defines a positive measure, too.

E. Positive-Definite Matrices

Let A be an n ×n matrix. All such matrices form an n2-dimensional manifold. When
A is symmetric and positive-definite, they form a n(n+1)

2 -dimensional manifold. This
is a submanifold embedded in the manifold of all the matrices. We may use the
upper right elements of A as a coordinate system. Positive-definite matrices appear
in statistics, physics, operations research, control theory, etc.

F. Neural Manifold

A neural network is composed of a large number of neurons connected with each
other, where the dynamics of information processing takes place. A network is spec-
ified by connection weights w j i connecting neuron i with neuron j . The set of all
such networks forms a manifold, where matrix W = (

w j i
)

is a coordinate system.
We will later analyze behaviors of such networks from the information geometry
point of view.

1.2 Divergence Between Two Points

1.2.1 Divergence

Let us consider two points P and Q in a manifold M , of which coordinates are ξP

and ξQ . A divergence D[P : Q] is a function of ξ p and ξQ which satisfies certain
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criteria. See Basseville (2013) for a detailed bibliography. We may write it as

D[P : Q] = D
[
ξP : ξQ

]
. (1.23)

We assume that it is a differentiable function of ξP and ξQ .

Definition 1.1 D[P : Q] is called a divergence when it satisfies the following
criteria:

(1) D[P : Q] ≥ 0.
(2) D[P : Q] = 0, when and only when P = Q.
(3) When P and Q are sufficiently close, by denoting their coordinates by ξP and

ξQ = ξP + dξ, the Taylor expansion of D is written as

D[ξP : ξP + dξ] = 1

2

∑
gi j (ξP)dξi dξ j + O(|dξ|3), (1.24)

and matrix G = (
gi j

)
is positive-definite, depending on ξP .

A divergence represents a degree of separation of two points P and Q, but it or its
square root is not a distance. It does not necessarily satisfy the symmetry condition,
so that in general

D[P : Q] �= D[Q : P]. (1.25)

We may call D[P : Q] divergence from P to Q. Moreover, the triangular inequality
does not hold. It has the dimension of the square of distance, as is suggested by
(1.24). It is possible to symmetrize a divergence by

DS[P : Q] = 1

2
(D[P : Q] + D[Q : P]) . (1.26)

However, the asymmetry of divergence plays an important role in information geom-
etry, as will be seen later.

When P and Q are sufficiently close, we define the square of an infinitesimal
distance ds between them by using (1.24) as

ds2 = 2D [ξ : ξ + dξ] =
∑

gi j dξi dξ j . (1.27)

A manifold M is said to be Riemannian when a positive-definite matrix G(ξ) is
defined on M and the square of the local distance between two nearby points ξ and
ξ +dξ is given by (1.27). A divergence D provides M with a Riemannian structure.
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1.2.2 Examples of Divergence

A. Euclidean Divergence

When we use an orthonormal Cartesian coordinate system in a Euclidean space, we
define a divergence by a half of the square of the Euclidean distance,

D[P : Q] = 1

2

∑(
ξPi − ξQi

)2
. (1.28)

The matrix G is the identity matrix in this case, so that

ds2 =
∑

(dξi )
2 . (1.29)

B. Kullback–Leibler Divergence

Let p(x) and q(x) be two probability distributions of random variable x in a manifold
of probability distributions. The following is called the Kullback–Leibler (KL)
divergence:

DK L [p(x) : q(x)] =
∫

p(x) log
p(x)

q(x)
dx . (1.30)

When x is discrete, integration is replaced by summation. We can easily check that it
satisfies the criteria of divergence. It is asymmetric in general and is useful in statis-
tics, information theory, physics, etc. Many other divergences will be introduced later
in a manifold of probability distributions.

C. KL-Divergence for Positive Measures

A manifold of positive measures Rn
+ is a subset of a Euclidean space. Hence, we

can introduce the Euclidean divergence (1.28) in it. However, we can extend the
KL-divergence to give

DK L [m1 : m2] =
∑

m1i log
m1i

m2i
−

∑
m1i +

∑
m2i . (1.31)

When the total masses of two measures m1 and m2 are 1, they are probability distri-
butions and DK L [m1 : m2] reduces to the KL-divergence DK L in (1.30).
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D. Divergences for Positive-Definite Matrices

There is a family of useful divergences introduced in the manifold of positive-definite
matrices. Let P and Q be two positive-definite matrices. The following are typical
examples of divergence:

D[P : Q] = tr (P log P − P log Q − P + Q) , (1.32)

which is related to the Von Neumann entropy of quantum mechanics,

D[P : Q] = tr
(
PQ−1

) − log
∣∣PQ−1

∣∣ − n, (1.33)

which is due to the KL-divergence of multivariate Gaussian distribution, and

D[P : Q] = 4

1 − α2
tr

(
−P

1−α
2 Q

1+α
2 + 1 − α

2
P + 1 + α

2
Q

)
, (1.34)

which is called the α-divergence, where α is a real parameter. Here, tr P denotes the
trace of matrix P and |P| is the determinant of P.

1.3 Convex Function and Bregman Divergence

1.3.1 Convex Function

A nonlinear function ψ(ξ) of coordinates ξ is said to be convex when the inequality

λψ
(
ξ1

) + (1 − λ)ψ
(
ξ2

) ≥ ψ
{
λξ1 + (1 − λ)ξ2

}
(1.35)

is satisfied for any ξ1, ξ2 and scalar 0 ≤ λ ≤ 1. We consider a differentiable convex
function. Then, a function is convex if and only if its Hessian

H(ξ) =
(

∂2

∂ξi∂ξ j
ψ(ξ)

)
(1.36)

is positive-definite.
There are many convex functions appearing in physics, optimization and engi-

neering problems. One simple example is

ψ(ξ) = 1

2

∑
ξ2

i (1.37)
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which is a half of the square of the Euclidean distance from the origin to point ξ. Let
p be a probability distribution belonging to Sn . Then, its entropy

H( p) = −
∑

pi log pi (1.38)

is a concave function, so that its negative, ϕ( p) = −H( p), is a convex function.
We give one more example from a probability model. An exponential family of

probability distributions is written as

p(x,θ) = exp
{∑

θi xi + k(x) − ψ(θ)
}

, (1.39)

where p(x,θ) is the probability density function of vector random variable x speci-
fied by vector parameter θ and k(x) is a function of x. The term exp {−ψ(θ)} is the
normalization factor with which

∫
p(x,θ)dx = 1 (1.40)

is satisfied. Therefore, ψ(θ) is given by

ψ(θ) = log
∫

exp
{∑

θi xi + k(x)
}

dx. (1.41)

M = {p(x,θ)} is regarded as a manifold, where θ is a coordinate system. By
differentiating (1.41), we can prove that its Hessian is positive-definite (see the next
subsection). Hence, ψ(θ) is a convex function. It is known as the cumulant generating
function in statistics and free energy in statistical physics. The exponential family
plays a fundamental role in information geometry.

1.3.2 Bregman Divergence

A graph of a convex function is shown in Fig. 1.4. We draw a tangent hyperplane
touching it at point ξ0 (Fig. 1.4). It is given by the equation

z = ψ
(
ξ0

) + ∇ψ
(
ξ0

) · (
ξ − ξ0

)
, (1.42)

where z is the vertical axis of the graph. Here, ∇ is the gradient operator such that
∇ψ is the gradient vector defined by

∇ψ =
(

∂

∂ξi
ψ(ξ)

)
, i = 1, . . . , n (1.43)
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Fig. 1.4 Convex function
z = ψ(ξ), its supporting
hyperplane with normal
vector n = ∇ψ (ξ0) and
divergence D [ξ : ξ0]

D[ : ]0

0

z

in the component form. Since ψ is convex, the graph of ψ is always above the
hyperplane, touching it at ξ0. Hence, it is a supporting hyperplane of ψ at ξ0 (Fig. 1.4).

We evaluate how high the function ψ(ξ) is at ξ from the hyperplane (1.42). This
depends on the point ξ0 at which the supporting hyperplane is defined. The difference
from (1.42) is written as

Dψ

[
ξ : ξ0

] = ψ(ξ) − ψ
(
ξ0

) − ∇ψ
(
ξ0

) · (
ξ − ξ0

)
. (1.44)

Considering it as a function of two points ξ and ξ0, we can easily prove that it satisfies
the criteria of divergence. This is called the Bregman divergence [Bregman (1967)]
derived from a convex function ψ.

We show examples of Bregman divergence.

Example 1.1 (Euclidean divergence) For ψ defined by (1.37) in a Euclidean space,
we easily see that the divergence is

D
[
ξ : ξ0

] = 1

2

∣∣ξ − ξ0

∣∣2
, (1.45)

that is, the same as a half of the square of the Euclidean distance. It is symmetric.

Example 1.2 (Logarithmic divergence) We consider a convex function

ψ(ξ) = −
n∑

i=1

log ξi (1.46)

in the manifold Rn
+ of positive measures. Its gradient is

∇ψ(ξ) =
(

− 1

ξi

)
. (1.47)
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Hence, the Bregman divergence is

Dψ

[
ξ : ξ′] =

n∑
i=1

(
log

ξ′
i

ξi
+ ξi

ξ′
i

− 1

)
. (1.48)

For another convex function

ϕ(ξ) =
∑

ξi log ξi , (1.49)

the Bregman divergence is the same as the KL-divergence (1.31), given by

Dϕ

[
ξ : ξ′] =

∑ (
ξi log

ξi

ξ′
i

− ξi + ξ′
i

)
. (1.50)

When
∑

ξi = ∑
ξ′

i = 1, this is the KL-divergence from probability vector ξ to
another ξ′.

Example 1.3 (Free energy of exponential family) We calculate the divergence given
by the normalization factor ψ(θ) (1.41) of an exponential family. To this end, we
differentiate the identity

1 =
∫

p(x,θ)dx =
∫

exp
{∑

θi xi + k(x) − ψ(θ)
}

dx (1.51)

with respect to θi . We then have

∫ {
xi − ∂

∂θi
ψ(θ)

}
p(x,θ)dx = 0 (1.52)

or

∂

∂θi
ψ(θ) =

∫
xi p(x,θ)dx = E [xi ] = x̄i , (1.53)

∇ψ(θ) = E [x] , (1.54)

where E denotes the expectation with respect to p(x,θ) and x̄i is the expectation of
xi . We then differentiate (1.52) again with respect to θ j and, after some calculations,
obtain

− ∂2ψ(θ)

∂θi∂θ j
+ E

[
(xi − x̄i )

(
x j − x̄ j

)] = 0 (1.55)

or
∇∇ψ(θ) = E

[
(x − x̄) (x − x̄)T

] = Var[x], (1.56)

http://dx.doi.org/10.1007/978-4-431-55978-8_2
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where xT is the transpose of column vector x and Var[x] is the covariance matrix of
x, which is positive-definite. This shows that ψ(θ) is a convex function. It is useful to
see that the expectation and covariance of x are derived from ψ(θ) by differentiation.

The Bregman divergence from θ to θ′ derived from ψ of an exponential family is
calculated from

Dψ

[
θ : θ′] = ψ (θ) − ψ(θ′) − ∇ψ(θ′) · (

θ − θ′) , (1.57)

proving that it is equal to the KL-divergence from θ′ to θ after careful calculations,

DK L
[

p
(
x,θ′) : p(x,θ)

] =
∫

p
(
x,θ′) log

p
(
x,θ′)

p(x,θ)
dx. (1.58)

1.4 Legendre Transformation

The gradient of ψ(ξ)

ξ∗ = ∇ψ(ξ) (1.59)

is equal to the normal vector n of the supporting tangent hyperplane at ξ, as is easily
seen from Fig. 1.4. Different points have different normal vectors. Hence, it is possible
to specify a point of M by its normal vector. In other words, the transformation
between ξ and ξ∗ is one-to-one and differentiable. This shows that ξ∗ is used as
another coordinate system of M , which is connected with ξ by (1.59).

The transformation (1.59) is known as the Legendre transformation. The Legen-
dre transformation has a dualistic structure concerning the two coupled coordinate
systems ξ and ξ∗. To show this, we define a new function of ξ∗ by

ψ∗ (
ξ∗) = ξ · ξ∗ − ψ(ξ), (1.60)

where
ξ · ξ∗ =

∑
i

ξiξ
∗
i (1.61)

and ξ is not free but is a function of ξ∗,

ξ = f
(
ξ∗) , (1.62)

which is the inverse function of ξ∗ = ∇ψ(ξ). By differentiating (1.60) with respect
to ξ∗, we have

∇ψ∗ (
ξ∗) = ξ + ∂ξ

∂ξ∗ ξ∗ − ∇ψ(ξ)
∂ξ

∂ξ∗ . (1.63)
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Since the last two terms of (1.63) cancel out because of (1.59), we have a dualistic
structure

ξ∗ = ∇ψ(ξ), ξ = ∇ψ∗ (
ξ∗) . (1.64)

ψ∗ is called the Legendre dual of ψ. The dual function ψ∗ satisfies

ψ∗ (
ξ∗) = max

ξ′

{
ξ′ · ξ∗ − ψ(ξ′)

}
, (1.65)

which is usually used as the definition of ψ∗. Our definition (1.60) is direct. We need
to show ψ∗ is a convex function. The Hessian of ψ∗ (

ξ∗) is written as

G∗ (
ξ∗) = ∇∇ψ∗ (

ξ∗) = ∂ξ

∂ξ∗ , (1.66)

which is the Jacobian matrix of the inverse transformation from ξ∗ to ξ. This is
the inverse of the Hessian G = ∇∇ψ(ξ), since it is the Jacobian matrix of the
transformation from ξ to ξ∗. Hence, it is a positive-definite matrix. This shows that
ψ∗ (

ξ∗) is a convex function of ξ∗.
A new Bregman divergence is derived from the dual convex function ψ∗ (

ξ∗),

Dψ∗
[
ξ∗ : ξ∗′] = ψ∗ (

ξ∗) − ψ∗ (
ξ∗′) − ∇ψ∗ (

ξ∗′) · (
ξ∗ − ξ∗′) , (1.67)

which we call the dual divergence. However, by calculating carefully, one can easily
derive

Dψ∗
[
ξ∗ : ξ∗′] = Dψ

[
ξ′ : ξ

]
. (1.68)

Hence, the dual divergence is equal to the primal one if the order of two points is
exchanged. Therefore, the divergences derived from the two convex functions are
substantially the same, except for the order.

It is convenient to use a self-dual expression of divergence by using the two
coordinate systems.

Theorem 1.1 The divergence from P to Q derived from a convex ψ(ξ) is written as

Dψ[P : Q] = ψ
(
ξP

) + ψ∗ (
ξ∗

Q

) − ξP · ξ∗
Q, (1.69)

where ξP is the coordinates of P in ξ coordinate system and ξ∗
Q is the coordinates

of Q in ξ∗ coordinate system.

Proof From (1.60), we have

ψ∗ (
ξ∗

Q

) = ξQ · ξ∗
Q − ψ(ξQ). (1.70)

Substituting (1.70) in (1.69) and using ∇ψ
(
ξQ

) = ξ∗
Q , we have the theorem.
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We give examples of dual convex functions. For convex function (1.37) in
Example 1.1, we easily have

ψ∗ (
ξ∗) = 1

2

∣∣ξ∗∣∣2
(1.71)

and
ξ∗ = ξ. (1.72)

Hence, the dual convex function is the same as the primal one, implying that the
structure is self-dual. �

In the case of Example 1.2, the duals of ψ and ϕ in (1.46) and (1.49) are

ψ∗ (
ξ∗) = −

∑ {
1 + log

(−ξ∗
i

)}
, (1.73)

ϕ∗ (
ξ∗) =

∑
exp

{
ξ∗

i − 1
}
, (1.74)

by which
∇ψ∗ (

ξ∗) = ξ, ∇ϕ∗ (
ξ∗) = ξ (1.75)

hold, respectively.
In the case of the free energy ψ(θ) in Example 1.3, its Legendre transformation is

θ∗ = ∇ψ(θ) = Eθ[x], (1.76)

where Eθ is the expectation with respect to p(x,θ). Because of this, θ∗ is called the
expectation parameter in statistics. The dual convex function ψ∗ (

θ∗) derived from
(1.65) is calculated from

ψ∗ (
θ∗) = θ∗ · θ − ψ(θ), (1.77)

where θ is a function of θ∗ given by θ∗ = ∇ψ(θ). This proves that ψ∗ is the negative
entropy,

ψ∗ (
θ∗) =

∫
p(x,θ) log p(x,θ)dx. (1.78)

The dual divergence derived from ψ∗ (
θ∗) is the KL-divergence

Dψ∗
[
θ∗ : θ∗′] = DK L

[
p(x,θ) : p

(
x,θ′)] , (1.79)

where θ = ∇ψ∗(θ∗) and θ′ = ∇ψ∗ (
θ∗′).
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1.5 Dually Flat Riemannian Structure Derived
from Convex Function

1.5.1 Affine and Dual Affine Coordinate Systems

When a functionψ(θ) is convex in a coordinate systemθ, the same function expressed
in another coordinate system ξ,

ψ̃(ξ) = ψ {θ(ξ)} , (1.80)

is not necessarily convex as a function of ξ. Hence, the convexity of a function
depends on the coordinate system of M . But a convex function remains convex
under affine transformations

θ′ = Aθ + b, (1.81)

where A is a non-singular constant matrix and b is a constant vector.
We fix a coordinate system θ in which ψ(θ) is convex and introduce geometric

structures to M based on it. We consider θ as an affine coordinate system, which
provides M with an affine flat structure: M is a flat manifold and each coordinate axis
of θ is a straight line. Any curve θ(t) of M written in the linear form of parameter t ,

θ(t) = at + b, (1.82)

is a straight line, where and a and b are constant vectors. We call it a geodesic
of an affine manifold. Here, the term “geodesic” is used to represent a straight line
and does not mean the shortest path connecting two points. A geodesic is invariant
under affine transformations (1.81), but this is not true under nonlinear coordinate
transformations.

Dually, we can define another coordinate system θ∗ by the Legendre transforma-
tion,

θ∗ = ∇ψ(θ), (1.83)

and consider it as another type of affine coordinates. This defines another affine
structure. Each coordinate axis of θ∗ is a dual straight line or dual geodesic. A dual
straight line is written as

θ∗(t) = at + b. (1.84)

This is the dual affine structure derived from the convex function ψ∗ (
θ∗). Since the

coordinate transformation between the two affine coordinate systems θ and θ∗ is not
linear in general, a geodesic is not a dual geodesic and vice versa. This implies that
we have introduced two different criteria of straightness or flatness in M , namely
primal and dual flatness. M is dually flat and the two flat coordinates are connected
by the Legendre transformation.
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1.5.2 Tangent Space, Basis Vectors and Riemannian Metric

When dθ is an (infinitesimally) small line element, the square of its length ds is
given by

ds2 = 2Dψ [θ : θ + dθ] =
∑

gi j dθi dθ j . (1.85)

Here, we use the upper indices i, j to represent components of θ. It is easy to see
that the Riemannian metric gi j is given by the Hessian of ψ

gi j (θ) = ∂2

∂θi∂θ j
ψ(θ). (1.86)

Let {ei , i = 1, . . . , n} be the set of tangent vectors along the coordinate curves
of θ (Fig. 1.5). The vector space spanned by {ei } is the tangent space of M at each
point. Since θ is an affine coordinate system, {ei } looks the same at any point. A
tangent vector A is represented as

A =
∑

Ai ei , (1.87)

where Ai are the components of A with respect to the basis vectors {ei } , i =
1, . . . , n. The small line element dθ is a tangent vector expressed as

dθ =
∑

dθi ei . (1.88)

Dually, we introduce a set of basis vectors
{

e∗i
}

which are tangent vectors of
the dual affine coordinate curves of θ∗ (Fig. 1.6). The small line element dθ∗ is
expressed as

dθ∗ =
∑

dθ∗
i e∗i (1.89)

in this basis. A vector A is represented in this basis as

A =
∑

Ai e∗i . (1.90)

Fig. 1.5 Basis vectors ei
and small line element dθ

θ j

d

ej

ei
θ i



1.5 Dually Flat Riemannian Structure Derived from Convex Function 21

Fig. 1.6 Two dual bases
{ei } and

{
e∗i

}

e* i
ej

e* j

ei

i
*

*θ j

θ j

θ

θ i

In order to distinguish affine and dual affine bases, we use the lower index as in ei

for the affine basis and the upper index as in e∗i for the dual affine basis. Then, by
using the lower and upper indices as in Ai and Ai in the two bases, the components
of a vector are naturally expressed without changing the letter A but by changing the
position of the index to upper or lower. Since they are the same vector expressed in
different bases,

A =
∑

Ai ei =
∑

Ai e∗i , (1.91)

and Ai �= Ai in general.
It is cumbersome to use the summation symbol in Eqs. (1.87)–(1.91) and others.

Even if the summation symbol is discarded, the reader may consider from the context
that it has been omitted by mistake. In most cases, index i appearing twice in one
term, once as an upper index and the other time as a lower index, is summed over
from 1 to n. A. Einstein introduced the following summation convention:

Einstein Summation Convention: When the same index appears twice in one term,
once as an upper index and the other time as a lower index, summation is automati-
cally taken over this index even without the summation symbol.

We use this convention throughout the monograph, unless specified otherwise.
Then, (1.91) is rewritten as

A = Ai ei = Ai e∗i . (1.92)

Since the square of the length ds of a small line element dθ is given by the inner
product of dθ, we have

ds2 = 〈dθ, dθ〉 = gi j dθi dθ j , (1.93)

which is rewritten as

ds2 = 〈dθi ei , dθ j e j 〉 = 〈ei , e j 〉dθi dθ j . (1.94)
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Therefore, we have
gi j (θ) = 〈ei , e j 〉. (1.95)

This is the inner product of basis vectors ei and e j , which depends on position θ.
A manifold equipped with G = (

gi j
)
, by which the length of a small line element

dθ is given by (1.93), is a Riemannian manifold. In the case of a Euclidean space
with an orthonormal coordinate system, gi j is given by

gi j = δi j , (1.96)

where δi j is the Kronecker delta, which is equal to 1 for i = j and 0 otherwise.
This is derived from convex function (1.37). A Euclidean space is a special case of
the Riemannian manifold in which there is a coordinate system such that gi j does
not depend on position, in particular, written as (1.96). A manifold induced from a
convex function is not Euclidean in general.

The Riemannian metric can also be represented in the dual affine coordinate
system θ∗. From the representation of a small line element dθ∗ as

dθ∗ = dθ∗
i e∗i , (1.97)

we have
ds2 = 〈dθ∗, dθ∗〉 = g∗i j dθ∗

i dθ∗
j , (1.98)

where g∗i j is given by
g∗i j = 〈e∗i , e∗ j 〉. (1.99)

From (1.66), we see that the components of the small line elements dθ and dθ∗

are related as

dθ∗ = Gdθ, dθ = G−1dθ∗, (1.100)

dθ∗
i = gi j dθ j , dθ j = g∗ j i dθ∗

i , (1.101)

where G = G∗−1. So the two Riemannian metric tensors are mutually inverse.
This also implies that the two bases are related as

e∗i = gi j e j , ei = gi j e∗ j . (1.102)

Hence, the inner product of two basis vectors ei and e∗
j satisfies

〈ei , e∗ j 〉 = δ
j
i (1.103)

because G = G∗−1. So the two bases {ei } and
{

e∗i
}

are mutually dual or recipro-
cal (Fig. 1.6). Neither of the bases is orthonormal by itself in general, but the two
together are complementarily orthogonal. Such a set of bases is useful, because the
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components of a vector A are given by the inner product,

Ai = 〈A, e∗i 〉, Ai = 〈A, ei 〉. (1.104)

The two components are connected by

Ai = gi j A j , A j = g∗i j Ai . (1.105)

1.5.3 Parallel Transport of Vector

A tangent vector A = Ai ei defined at a point θ is transported to another point θ′

without changing the components Ai , because ei are the same everywhere in a dually
flat manifold. This is a special case of parallel transport of a vector in a general non-
flat manifold. As will be seen in Part II, the parallel transport of a vector needs to
use an affine connection in the general case. But in our case of a dually flat manifold
derived from a convex function ψ(θ), the parallel transport is very simple.

The dual parallel transport of A is different from the parallel transport of A. When
A is represented in the dual basis as

A = Ai e∗i , (1.106)

the dual transport does not change the components Ai . However, it changes the
components Ai , because the relation between Ai and Ai depends on position θ or
θ∗, as is seen from (1.105), where gi j and g∗i j depend on θ and θ∗.

Since M is Riemannian and is not Euclidean in general, even though the parallel
transport is defined easily, the length of a vector changes by the parallel transport
and the dual parallel transport. The square of the magnitude of A is written as

|A|2 = 〈A, A〉 = gi j (θ)Ai A j = Ai Ai . (1.107)

Therefore, it depends on the position θ, even though the components of Ai do not
change by parallel transport. The inner product of vectors A and B is represented
by various forms,

〈A, B〉 = gi j Ai B j = g∗i j Ai B j = Ai Bi . (1.108)

Two vectors A and B are orthogonal when 〈A, B〉 = 0. However, when both
A and B are parallelly transported from θ to θ′, the orthogonality does not hold in
general at θ′ even when it holds at θ. However, when A is transported in parallel and
B is transported in dual parallel, the orthogonality is kept invariant, because Ai Bi is
invariant. This is an important property of two dually coupled parallel transports.
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1.6 Generalized Pythagorean Theorem
and Projection Theorem

1.6.1 Generalized Pythagorean Theorem

Two curves θ1(t) and θ2(t) intersect orthogonally when their tangent vectors

θ̇1(t) = d

dt
θ1(t), (1.109)

θ̇2(t) = d

dt
θ2(t) (1.110)

are orthogonal, that is,

〈θ̇1(t), θ̇2(t)〉 = gi j θ̇
i
1(t)θ̇

j
2(t) = 0 (1.111)

at the intersection point t = 0, θ1(0) = θ2(0) and˙denotes d/dt .
Even though a manifold is flat from the point of view of affine structures, it

is different from a Euclidean space. A dually flat manifold is a generalization of
the Euclidean space. A generalized Pythagorean theorem holds in a dually flat
manifold M .

Let us consider three points P, Q, R in a dually flat manifold M , which form a
triangle. We call it an orthogonal triangle when the dual geodesic connecting P and
Q is orthogonal to the geodesic connecting Q and R (Fig. 1.7).

Theorem 1.2 (Generalized Pythagorean Theorem) When triangle P Q R is orthog-
onal such that the dual geodesic connecting P and Q is orthogonal to the geodesic
connecting Q and R, the following generalized Pythagorean relation holds:

Dψ(R : P) = Dψ(Q : P) + Dψ(R : Q). (1.112)

Fig. 1.7 Generalized
orthogonal triangle ΔPQR
and Pythagorean theorem

P
dual geodesic

Q

R
geodesic
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Proof By using the relation

Dψ[P : Q] = ψ (θP) + ψ∗ (
θ∗

Q

) − θP · θ∗
Q, (1.113)

we have

Dψ(Q : P) + Dψ(R : Q) − Dψ(R : P) = (
θP − θQ

) (
θ∗

Q − θ∗
R

)
(1.114)

after some calculations. The dual geodesic connecting P and Q is written as

θ∗
P Q(t) = (1 − t)θ∗

P + tθ∗
Q, (1.115)

in the parametric form. Its tangent vector is given by

θ̇
∗
P Q(t) = θ∗

Q − θ∗
P . (1.116)

Dually, the geodesic connecting Q and R is

θQ R(t) = (1 − t)θQ + tθR (1.117)

and its tangent vector is
θ̇Q R(t) = θR − θQ . (1.118)

Since the two tangent vectors are orthogonal, we have

(
θ∗

P − θ∗
Q

) · (
θQ − θR

) = 0. (1.119)

The Pythagorean relation is proved from (1.114). �

Since the divergence is asymmetric, we have the dual statement.

Theorem 1.3 (Dual Pythagorean Theorem) When triangle P Q R is orthogonal such
that the geodesic connecting P and Q is orthogonal to the dual geodesic connecting
Q and R, the dual of the generalized Pythagorean relation holds,

Dψ∗(R : P) = Dψ∗(Q : P) + Dψ∗(R : Q). (1.120)

In the special case of convex function (1.37), the divergence is exactly a half
of the square of the Euclidean distance. Moreover, the affine coordinate system is
exactly the same as the dual affine coordinate system, because the affine structure
is self-dual. Hence, a geodesic is a dual geodesic at the same time. In this case, the
generalized Pythagorean relation reduces to the Pythagorean relation in a Euclidean
space. The theorems are indeed a generalization of the Pythagorean theorem of a
Euclidean space to a dually flat manifold.
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1.6.2 Projection Theorem

Consider a point P and a smooth submanifold S in a dually flat manifold M . Then,
the divergence from a point P to submanifold S is defined by

Dψ[P : S] = min
R∈S

Dψ[P : R]. (1.121)

We study the problem of finding the point in S that is closest to P in the sense
of divergence. This gives an approximation of P by using a point inside S. The
Pythagorean theorem is useful for solving various approximation problems.

We define the geodesic projection and the dual geodesic projection of P to S ⊂ M .
A curve θ(t) is said to be orthogonal to S when its tangent vector θ̇(t) is orthogonal
to any tangent vectors of S at the intersection (Fig. 1.8).

Definition 1.2 P̂S is the geodesic projection of P to S when the geodesic connecting
P and P̂S ∈ S is orthogonal to S. Dually, P̂∗

S is the dual geodesic projection of P to
S, when the dual geodesic connecting P and P̂∗

S ∈ S is orthogonal to S. See Fig. 1.8.

We then have the projection theorem:

Theorem 1.4 (Projection Theorem) Given P ∈ M and a smooth submanifold
S ⊂ M, the point P̂∗

S that minimizes the divergence Dψ[P : R], R ∈ S, is the
dual geodesic projection of P to S. The point P̂S that minimizes the dual divergence
Dψ∗ [P : R], R ∈ S, is the geodesic projection of P to S.

Proof Let P̂∗
S be the dual geodesic projection of P to S. Consider a point Q ∈ S which

is (infinitesimally) close to P̂∗
S . Then, three points P , P̂∗

S and Q form an orthogonal
triangle, because the small line element connecting P̂∗

S and Q is orthogonal to the
the dual geodesic connecting P and P̂∗

S . Hence, the Pythagorean theorem shows

Dψ[P : Q] = Dψ

[
P : P̂∗

S

]
+ Dψ

[
P̂∗

S : Q
]

(1.122)

Fig. 1.8 Geodesic
projection of P to S

P

M

Q

S

Ps

geodesic

. .
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for any neighboring Q. This shows that P̂∗
S is a critical point of Dψ[P : Q], Q ∈ S,

proving the theorem. The dual part is proved similarly. �

It should be noted that the projection theorem gives a necessary condition for the
point P̂∗

S to minimize the divergence, but is not sufficient. The projection or dual
projection can give the maximum or saddle point of the divergence. The following
theorem gives a sufficient condition for the minimality of the projection and its
uniqueness.

Theorem 1.5 When S is a flat submanifold of a dually flat manifold M, the dual
projection of P to S is unique and minimizes the divergence. Dually, when S is a
dual flat submanifold of a dually flat manifold M, the projection of P to S is unique
and minimizes the dual divergence.

Proof The Pythagorean relations (1.112), (1.120) hold for any Q ∈ S. Hence the
projection (dual projection) is unique and minimizes the dual divergence (diver-
gence). �

1.6.3 Divergence Between Submanifolds: Alternating
Minimization Algorithm

When there are two submanifolds K and S in a dually flat M , we define a divergence
between K and S by

D[K : S] = min
P∈K ,Q∈S

D[P : Q] = D
[
P̄ : Q̄

]
. (1.123)

The two points P̄ ∈ K and Q̄ ∈ S are the closest pair between K and S. In order to
obtain the closest pair, the following iterative algorithm, the alternating minimization
algorithm, is proposed. See Fig. 1.9.

Fig. 1.9 Iterated dual
geodesic projections (em
algorithm) .

.

K

S

Pt

Pt+1
P*

Q*
Q

t+1Q
t

...
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Begin with an arbitrary Qt ∈ S, t = 0, 1, . . ., and search for P ∈ K that minimizes
D [P : Qt ]. This is given by the geodesic projection of Qt to K . Let it be Pt ∈ K .
Then search for the point in S that minimizes D [Pt : Q]. Let it be Qt+1. This is
given by the dual geodesic projection of Pt to S. Since we have

D
[
Pt−1 : Qt

] ≥ D [Pt : Qt ] ≥ D
[
Pt : Qt+1

]
, (1.124)

the procedure converges. It is unique when S is flat and K is dual flat. Otherwise,
the converging point is not necessarily unique.

In later sections, the geodesic projection is called the e-projection, signifying the
exponential projection, and the dual geodesic projection is called the m-projection,
signifying the mixture projection. By this reason, this alternating primal and dual
geodesic projection algorithm is called the em algorithm.

Remarks

A dually flat Riemannian structure is derived from the Bregman divergence by using a
convex function. It has a dualistic structure. However, not all divergences are Bregman
divergences, that is, not necessarily derived from convex functions. An interesting
question is what type of geometry is induced from such a general divergence. This
question will be studied in Part II. Briefly speaking, it gives a Riemannian manifold
with a dual pair of affine connections which are not flat. There are no affine coordinate
systems in such cases.

A dually flat manifold is a generalization of a Euclidean space, inheriting useful
properties from it. A general non-flat manifold is regarded as a curved submanifold
of a dually flat manifold, as a Riemannian manifold is a curved submanifold of
a Euclidean space with higher dimensions. Therefore, it is important to study the
properties of a dually flat manifold.

The Pythagorean theorem and related projection theorem are highlights of a dually
flat manifold, proposed in Nagaoka and Amari (1982). However, this work was not
published in a journal, because, unfortunately, it was rejected by major journals.
These theorems play important roles in most applications of information geometry.
The Pythagorean theorem has been known for many years in the case of the KL-
divergence. It is information geometry that has generalized the Pythagorean relation
applicable to any Bregman divergence. Conversely, when a manifold is dually flat
from the geometrical point of view, we can prove that there is a convex function from
which the dually flat structure is derived. This will be explained later.

We add a comment on the notation. There are many coordinate systems in a
coordinate neighborhood of a manifold, because when ξ is a coordinate system, its
transform ζ = (ζ1, . . . , ζn),

ζ = f (ξ) ; ζκ = fκ (ξ1, . . . , ξn) , κ = 1, . . . , n (1.125)
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is another coordinate system, provided f is differentiable and invertible. The Jaco-
bian matrix J = (Jκi ) of the coordinate transformation

Jκi = ∂ fκ
∂ξi

, i = 1, . . . , n (1.126)

is non-degenerate, that is, matrix J is invertible.
Here we use indices i, j, . . . to represent components in the coordinate system

ξ = (ξi ) , i = 1, . . . , n and Greek indices κ,λ, ν, . . . for the coordinate system
ζ = (ζκ) ,κ = 1, . . . , n. This is a convenient way of distinguishing coordinate
systems. For example, a small line element connecting P and P + d P is dξ = (dξi )

in coordinate system ξ and dζ = (dζκ) in coordinate system ζ, and they are linearly
connected by

dζκ =
∑

i

Jκi dξi . (1.127)

When ds is a local distance written as

ds2 =
∑

gi j dξi dξ j (1.128)

in the coordinate system ξ, it can be written as

ds2 =
∑

gκλdζκdζλ (1.129)

in coordinate system ζ. Here,
(
gi j

)
and (gκλ) are different matrices connected by

gi j =
∑
κ,λ

Jκi Jλ jgκλ. (1.130)

Such a quantity is called a tensor. We use the same letter g for the Riemannian
metric tensor, but indices i , j or κ, λ distinguish the coordinate system in which
it is represented. In general, we may use the same letter for a quantity even if it is
represented in different coordinate systems, distinguishing them by the letter types
of indices. This is convenient for the index notation, introduced by Schouten (1954).
We mainly follow this idea.

We may choose any coordinate system. The geometry should be the same
whichever coordinate system we use. Mathematicians often do not like to use a
coordinate system, because geometry should not depend on it. They say that the
index notation is an ugly classic method of differential geometry, where tensors are
represented by quantities having indices. So they use the coordinate-free method of
abstract description. This is sometimes elegant. However, it is wiser to choose an ade-
quate coordinate system, because the geometry is the same in whichever coordinate
system it is analyzed. For Euclidean geometry, an orthonormal coordinate system
is usually preferable. However, when we analyze a boundary value problem of the
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heat equation in a Euclidean space, if the boundary is a circle, the polar coordinate
system makes the boundary condition very simple. So in such a case, we use this.

Any coordinate system is permissible, but it is advisable to use a convenient
one, instead of rejecting the usage of a coordinate system. This is the way in which
engineers and physicists work.



Chapter 2
Exponential Families and Mixture
Families of Probability Distributions

The present chapter studies the geometry of the exponential family of probability
distributions. It is not only a typical statistical model, including many well-known
families of probability distributions such as discrete probability distributions Sn ,
Gaussian distributions, multinomial distributions, gamma distributions, etc., but is
associated with a convex function known as the cumulant generating function or free
energy. The induced Bregman divergence is the KL-divergence. It defines a dually
flat Riemannian structure. The derived Riemannian metric is the Fisher information
matrix and the two affine coordinate systems are the natural (canonical) parameters
and expectation parameters, well-known in statistics. An exponential family is a
universal model of dually flat manifolds, because any Bregman divergence has a
corresponding exponential family of probability distributions (Banerjee et al. 2005).

We also study the mixture family of probability distributions, which is the dual of
the exponential family. Applications of the generalized Pythagorean theorem demon-
strate how useful this is.

2.1 Exponential Family of Probability Distributions

The standard form of an exponential family is given by the probability density
function

p(x,θ) = exp
{
θi hi (x) + k(x) − ψ(θ)

}
, (2.1)

where x is a random variable, θ = (
θ1, . . . , θn

)
is an n-dimensional vector parameter

to specify a distribution, hi (x) are n functions of x which are linearly independent,
k(x) is a function of x , ψ corresponds to the normalization factor and the Einstein
summation convention is working. We introduce a new vector random variable x =
(x1, . . . , xn) by

xi = hi (x). (2.2)

The original version of this chapter was revised: The incomplete texts have been updated.
The correction to this chapter is available at https://doi.org/10.1007/978-4-431-55978-8_14
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We further introduce a measure in the sample space X = {x} by

dμ(x) = exp {k(x)} dx . (2.3)

Then, (2.1) is rewritten as

p(x,θ)dx = exp {θ · x − ψ(θ)} dμ(x). (2.4)

Hence, we may put
p(x,θ) = exp {θ · x − ψ(θ)} , (2.5)

which is a probability density function of x with respect to measure dμ(x).
The family of distributions

M = {p(x,θ)} (2.6)

forms an n-dimensional manifold, where θ is a coordinate system. From the normal-
ization condition ∫

p(x,θ)dμ(x) = 1, (2.7)

ψ is written as
ψ(θ) = log

∫
exp(θ · x)dμ(x). (2.8)

We proved in Chap. 1 that ψ(θ) is a convex function of θ, known as the cumulant
generating function in statistics and free energy in physics. A dually flat Riemannian
structure is introduced in M by using ψ(θ). The affine coordinate system is θ, which
is called the natural or canonical parameter of an exponential family. The dual affine
parameter is given by the Legendre transformation,

θ∗ = ∇ψ(θ), (2.9)

which is the expectation of x denoted by η = (η1, . . . , ηn),

η = E[x] =
∫

x p(x,θ)dμ(x). (2.10)

This η is called the expectation parameter in statistics. Since the dual affine parameter
θ∗ is nothing other than η, we hereafter use η, instead of θ∗, to represent the dual
affine parameter in an exponential family. This is a conventional notation used in
Amari and Nagaoka (2000), avoiding the cumbersome ∗ notation. So we have

η = ∇ψ(θ). (2.11)

Hence, θ and η are two affine coordinate systems connected by the Legendre trans-
formation.

http://dx.doi.org/10.1007/978-4-431-55978-8_1
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We use ϕ(η) to denote the dual convex function ψ∗ (
θ∗), the Legendre dual of ψ,

which is defined by
ϕ(η) = max

θ
{θ · η − ψ(θ)} . (2.12)

In order to obtain ϕ(η), we calculate the negative entropy of p(x,θ), obtaining

E
[
log p(x,θ)

] =
∫

p(x,θ) log p(x,θ)dμ(x) = θ · η − ψ(θ). (2.13)

Given η, the θ that maximizes the right-hand side of (2.12) is given by the solution
of η = ∇ψ(θ). Hence, the dual convex function ψ∗ of ψ, which we hereafter denote
as ϕ, is given by the negative entropy,

ϕ(η) =
∫

p(x,θ) log p(x,θ)dx, (2.14)

where θ is regarded as a function of η through η = ∇ψ(θ). The inverse transforma-
tion is given by

θ = ∇ϕ(η). (2.15)

The divergence from p(x,θ′) to p(x,θ) is written as

Dψ

[
θ′ : θ

] = ψ
(
θ′) − ψ(θ) − η · (

θ′ − θ
)

=
∫

p(x,θ) log
p(x,θ)

p
(
x,θ′)dμ(x) = DK L

[
θ : θ′] . (2.16)

This implies that the KL-divergence is the dual of the canonical divergence derived
from ψ.

The Riemannian metric is given by

gi j (θ) = ∂i∂ jψ(θ), (2.17)

gi j (η) = ∂i∂ jϕ(η), (2.18)

for which we hereafter use the abbreviation

∂i = ∂

∂θi
, ∂i = ∂

∂ηi
. (2.19)

Here, the position of the index i is important. If it is lower, as in ∂i , the differentiation
is with respect to θi , whereas, if it is upper as in ∂i , the differentiation is with respect
to ηi .

The Fisher information matrix plays a fundamental role in statistics. We prove
the following theorem which connects geometry and statistics.

Theorem 2.1 The Riemannian metric in an exponential family is the Fisher infor-
mation matrix defined by
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gi j = E
[
∂i log p(x,θ)∂ j log p(x,θ)

]
. (2.20)

Proof From
∂i log p(x,θ) = xi − ∂iψ(θ) = xi − ηi , (2.21)

we have

E
[
∂i log p(x,θ)∂ j log p(x,θ)

] = E
[
(xi − ηi )

(
x j − η j

)]
, (2.22)

which is equal to ∇∇ψ(θ). This is the Riemannian metric derived from ψ(θ), as is
shown in (1.56). �

2.2 Examples of Exponential Family: Gaussian
and Discrete Distributions

There are many statistical models belonging to the exponential family. Here, we
show only two well-known, important distributions.

2.2.1 Gaussian Distribution

The Gaussian distribution with mean μ and variance σ2 has the probability density
function

p(x,μ,σ) = 1√
2πσ

exp

{
− (x − μ)2

2σ2

}
. (2.23)

We introduce a new vector random variable x = (x1, x2),

x1 = h1(x) = x, (2.24)

x2 = h2(x) = x2. (2.25)

Note that x and x2 are dependent, but are linearly independent. We further introduce
new parameters

θ1 = μ

σ2
, (2.26)

θ2 = − 1

2σ2
. (2.27)

Then, (2.23) is written in the standard form,

p(x,θ) = exp {θ · x − ψ(θ)} . (2.28)

The convex function ψ(θ) is given by

http://dx.doi.org/10.1007/978-4-431-55978-8_1
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ψ(θ) = μ2

2σ2
+ log

(√
2πσ

)

= −
(
θ1

)2

4θ2
− 1

2
log

(−θ2
) + 1

2
log π. (2.29)

Since x1 and x2 are not independent but satisfy the relation

x2 = (x1)
2 , (2.30)

we use the dominating measure of

dμ(x) = δ
(
x2 − x2

1

)
dx, (2.31)

where δ is the delta function.
The dual affine coordinates η are given from (2.10) as

η1 = μ, η2 = μ2 + σ2. (2.32)

2.2.2 Discrete Distribution

Distributions of discrete random variable x over X = {0, 1, . . . , n} form a probability
simplex Sn . A distribution p = (p0, p1, . . . , pn) is represented by

p(x) =
n∑

i=0

piδi (x). (2.33)

We show that Sn is an exponential family. We have

log p(x) =
n∑

i=0

(log pi ) δi (x) =
n∑

i=1

(log pi ) δi (x) + (log p0) δ0(x)

=
n∑

i=1

(
log

pi

p0

)
δi (x) + log p0, (2.34)
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because of

δ0(x) = 1 −
n∑

i=1

δi (x). (2.35)

We introduce new random variables xi ,

xi = hi (x) = δi (x), i = 1, . . . , n (2.36)

and new parameters

θi = log
pi

p0
. (2.37)

Then, a discrete distribution p is written from (2.34) as

p(x,θ) = exp

{
n∑

i=1

θi xi − ψ(θ)

}

, (2.38)

where the cumulant generating function is

ψ(θ) = − log p0 = log

{

1 +
n∑

i=1

exp
(
θi

)
}

. (2.39)

The dual affine coordinates η are

ηi = E [hi (x)] = pi , i = 1, . . . , n. (2.40)

The dual convex function is the negative entropy,

ϕ(η) =
∑

ηi log ηi +
(

1 −
∑

ηi

)
log

(
1 −

∑
ηi

)
. (2.41)

By differentiating it, we have θ = ∇ϕ(η).

θi = log
ηi

1 − ∑
ηi

. (2.42)

2.3 Mixture Family of Probability Distributions

A mixture family is in general different from an exponential family, but family Sn

of discrete distributions is an exponential family and a mixture family at the same
time. We show that the two families play a dual role.

Given n + 1 probability distributions q0(x), q1(x), . . . , qn(x) which are linearly
independent, we compose a family of probability distributions given by
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p(x,η) =
n∑

i=0

ηi qi (x), (2.43)

where
n∑

i=0

ηi = 1, ηi > 0. (2.44)

This is a statistical model called a mixture family, where η = (η1, . . . , ηn) is a
coordinate system and η0 = 1 − ∑

ηi . (We sometimes consider the closure of the
above family, where ηi ≥ 0.)

As is easily seen from (2.33), a discrete distribution p(x) ∈ Sn is a mixture family,
where

qi (x) = δi (x), ηi = pi , i = 0, 1, . . . , n. (2.45)

Hence, η is a dual affine coordinate system of the exponential family Sn . We consider
a general mixture family (2.43) which is not an exponential family. Even in this case,
the negative entropy

ϕ(η) =
∫

p(x,η) log p(x,η)dx (2.46)

is a convex function of η. Therefore, we regard it as a dual convex function and
introduce the dually flat structure to M = {p(x,η)}, having η as the dual affine
coordinate system. Then, the primary affine coordinates are given by the gradient,

θ = ∇ϕ(η). (2.47)

It defines the primal affine structure dually coupled with η, although θ is not the
natural parameter of an exponential family, except for the case of Sn where θ is the
natural parameter.

The divergence given by ϕ(η) is the KL-divergence

Dϕ

[
η : η′] =

∫
p(x,η) log

p(x,η)

p (x,η′)
dx . (2.48)

2.4 Flat Structure: e-flat and m-flat

The manifold M of exponential family is dually flat. The primal affine coordinates
which define straightness or flatness are the natural parameter θ in an exponential
family. Let us consider the straight line, that is a geodesic, connecting two distribu-
tions p(x,θ1) and p(x,θ2). This is written in the θ coordinate system as

θ(t) = (1 − t)θ1 + tθ2, (2.49)



38 2 Exponential Families and Mixture Families of Probability . . .

where t is the parameter. The probability distributions on the geodesic are

p(x, t) = p {x,θ(t)} = exp {t (θ2 − θ1) · x + θ1x − ψ(t)} . (2.50)

Hence, a geodesic itself is a one-dimensional exponential family, where t is the
natural parameter.

By taking the logarithm, we have

log p(x, t) = (1 − t) log p (x,θ1) + t log p (x,θ2) − ψ(t). (2.51)

Therefore, a geodesic consists of a linear interpolation of the two distributions in the
logarithmic scale. Since (2.51) is an exponential family, we call it an e-geodesic, e
standing for “exponential”. More generally, a submanifold which is defined by linear
constraints in θ is said to be e-flat. The affine parameter θ is called the e-affine
parameter.

The dual affine coordinates are η, and define the dual flat structure. The dual
geodesic connecting two distributions specified by η1 and η2 is given by

η(t) = (1 − t)η1 + tη2 (2.52)

in terms of the dual coordinate system. Along the dual geodesic, the expectation of
x is linearly interpolated,

Eη(t)[x] = (1 − t)Eη1
[x] + tEη2

[x]. (2.53)

In the case of discrete probability distributions Sn , the dual geodesic connecting p1
and p2 is

p(t) = (1 − t) p1 + t p2, (2.54)

which is a mixture of two distributions p1 and p2. Hence, a dual geodesic is a mixture
of two probability distributions. We call a dual geodesic an m-geodesic and, by this
reasoning, η is called the m-affine parameter, where m stands for “mixture”. A
submanifold which is defined by linear constraints in η is said to be m-flat. The
linear mixture

(1 − t)p
(
x,η1

) + tp
(
x,η2

)
(2.55)

is not included in M in general, but p
(
x, (1 − t)η1 + tη2

)
is in M , where we used the

abuse of notation p(x,η) to specify the distribution of M of which dual coordinates
are η.

Remark An m-geodesic (2.52) is not a linear mixture of two distributions specified
by η1 and η2 in the case of a general exponential family. However, we use the term
m-geodesic even in this case.
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2.5 On Infinite-Dimensional Manifold of Probability
Distributions

We have shown that Sn of discrete probability distributions is an exponential family
and a mixture family at the same time. It is a super-manifold, in which any statistical
model of a discrete random variable is embedded as a submanifold. When x is a
continuous random variable, we are apt to consider the geometry of the manifold
F of all probability density functions p(x) in a similar way. It is a super-manifold
including all statistical models of a continuous random variable. It is considered to be
an exponential family and a mixture family at the same time. However, the problem
is not mathematically easy, since it is a function space of infinite dimensions. We
show a naive idea of studying the geometry of F . This is not mathematically justified,
although it works well in most cases, except for “pathological” situations.

Let p(x) be a probability density function of real random variable x ∈ R, which
is mutually absolutely continuous with respect to the Lebesgue measure.1 We put

F =
{

p(x)

∣∣∣∣p(x) > 0,

∫
p(x)dx = 1

}
. (2.56)

Then, F is a function space consisting of L1 functions. For two distributions p1(x)

and p2(x), the exponential family connecting them is written as

pexp(x, t) = exp {(1 − t) log p1(x) + t log p2(x) − ψ(t)} , (2.57)

provided it exists in F . Also the mixture family connecting them

pmix(x, t) = (1 − t)p1(x) + tp2(x) (2.58)

is assumed to belong to F . Then, F is regarded as an exponential and a mixture
family at the same time as Sn is. Mathematically, there is a delicate problem con-
cerning the topology of F . The L1-topology and L2-topology of the function space
F are different. Also the topology induced by p(x) is different from that induced by
log p(x).

Disregarding such mathematical problems, we discretize the real line R into n +1
intervals, I0, I1, . . . , In . Then, the discretized version of p(x) is given by the discrete
probability distribution p = (p0, p1, . . . , pn),

pi =
∫

Ii

p(x)dx, i = 0, 1, . . . , n. (2.59)

1It would be better to use density function p(x) with respect to the Gaussian measure

dμ(x) = 1√
2π

exp

{
− x2

2

}
dx,

rather than the Lebsesque measure dx .
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This gives a mapping from F to Sn , which approximates p(x) by p ∈ Sn . When the
discretization is done in such a way that pi in each interval converges to 0 as n tends
to infinity, the approximation looks fine. Then, the geometry of F would be defined
by the limit of Sn consisting of discretized p. However, we have difficulty in this
approach. The limit n → ∞ of the geometry of Sn might not be unique, depending
on the method of discretization. Moreover, an admissible discretization would be
different for different p(x).

Forgetting about the difficulty, by using the delta function δ(x), let us introduce a
family of random variables δ(s − x) indexed by a real parameter s, which plays the
role of index i in δi (x) of Sn . Then, we have

p(x) =
∫

p(s)δ(x − s)ds, (2.60)

which shows that F is a mixture family generated by the delta distributions δ(s − x),
s ∈ R. Here, p(s) are mixing coefficients. Similarly, we have

p(x) = exp

{∫
θ(s)δ(s − x)dx − ψ

}
, (2.61)

where
θ(s) = log p(s) + ψ (2.62)

and ψ is a functional of θ(s) formally given by

ψ[θ(s)] = log

{∫
exp {θ(s)} ds

}
. (2.63)

Hence, F is an exponential family where θ(s) = log p(s)+ ψ is the θ affine coordi-
nates and η(s) = p(s) is the dual affine coordinates η. The dual convex function is

ϕ [η(s)] =
∫

η(s) log η(s)ds. (2.64)

Indeed the dual coordinates are given by

η(s) = Ep[δ(s − x)] = p(s) (2.65)

and we have
η(s) = ∇ψ[θ(s)], (2.66)

where ∇ is the Fréchet-derivative with respect to function θ(s). The e-geodesic
connecting p(x) and q(x) is (2.57) and the m-geodesic (2.58). The tangent vector of
an e-geodesic is
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d

dt
log p(x, t) = l̇(x, t) = log q(x) − log p(x) (2.67)

in the e-coordinates, and that of an m-geodesic is

ṗ(x, t) = q(x) − p(x) (2.68)

in the m-coordinates.
The KL-divergence is

DK L [p(x) : q(x)] =
∫

p(x) log

{
p(x)

q(x)

}
dx, (2.69)

which is the Bregman divergence derived from ψ[θ] and it gives F a dually flat
structure. The Pythagorean theorem is written, for three distributions p(x), q(x) and
r(x), as

DK L [p(x) : r(x)] = DK L [p(x) : q(x)] + DK L [q(x) : r(x)] , (2.70)

when the mixture geodesic connecting p and q is orthogonal to the exponential-
geodesic connecting q and r , that is, when

∫
{p(x) − q(x)} {log r(x) − log q(x)} dx = 0. (2.71)

It is easy to prove this directly. The projection theorem follows similarly.
The KL-divergence between two nearby distributions p(x) and p(x) + δ p(x) is

expanded as

DK L [p(x) : p(x) + δ p(x)] =
∫

p(x) log

{
1 − δ p(x)

p(x)

}
dx

= 1

2

∫ {δ p(x)}2

p(x)
dx . (2.72)

Hence, the squared distance of an infinitesimal deviation δ p(x) is

ds2 =
∫ {δ p(x)}2

p(x)
dx, (2.73)

which defines the Riemannian metric given by the Fisher information.
Indeed, the Riemannian metric in θ-coordinates are given by

g(s, t) = ∇∇ψ = p(s)δ(s − t) (2.74)
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and its inverse is

g−1(s, t) = 1

p(s)
δ(s − t) (2.75)

in η-coordinates.
It appears that most of the results we have studied in Sn hold well even in the

function space F with naive treatment. They are practically useful even though no
mathematical justification is given. Unfortunately, we are not free from mathematical
difficulties. We show some examples.

The pathological nature in the continuous case has long been known. The follow-
ing fact was pointed out by Csiszár (1967). We define a quasi-ε-neighborhood of
p(x) based on the KL-divergence,

Nε = {q(x) |DK L [p(x) : q(x)] < ε } . (2.76)

However, the set of the quasi-ε-neighborhoods does not satisfy the axiom of the
topological subbase. Hence, we cannot use the KL-divergence to define the topology.
More simply, it is demonstrated that the entropy functional

ϕ[p(x)] =
∫

p(x) log p(x)dx (2.77)

is not continuous in F , whereas it is continuous and differentiable in Sn (Ho and
Yeung 2009).

G. Pistone and his co-workers studied the geometrical properties of F based on
the theory of Orlicz space, where F is not a Hilbert space but a Banach space.
See Pistone and Sempi (1995), Gibilisco and Pistone (1998), Pistone and Rogathin
(1999), Cena and Pistone (2007). This was further developed by Grasselli (2010). See
recent works by Pistone (2013) and Newton (2012), where trials for mathematical
justification using innocent ideas have been developed.

2.6 Kernel Exponential Family

Fukumizu (2009) proposed a kernel exponential family, which is a model of proba-
bility distributions of function degrees of freedom. Let k(x, y) be a kernel function
satisfying positivity, ∫

k(x, y) f (x) f (y)dxdy > 0 (2.78)

for any f (x) not equal to 0. A typical example is the Gaussian kernel

kσ(x, y) = 1√
2πσ

exp

{
− 1

2σ2
(x − y)2

}
, (2.79)

where σ is a free parameter.
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A kernel exponential family is defined by

p(x, θ) = exp

{∫
θ(y)k(x, y)dx − ψ[θ]

}
(2.80)

with respect to suitable measure dμ(x), e.g.,

dμ(x) = exp

{
− x2

2τ 2

}
dx . (2.81)

The natural or canonical parameter is a function θ(y) indexed by y instead of θi and
the dual parameter is

η(y) = E[k(x, y)], (2.82)

where expectation is taken by using p(x, θ). ψ[θ] is a convex functional of θ(y).
This exponential family does not cover all p(x) of probability density functions. So
there are many such models, depending on k(x, y) and dμ(x). The naive treatment
in Sect. 2.5 may be regarded as the special case where the kernel k(x, y) is put equal
to the delta function δ(x − y).

2.7 Bregman Divergence and Exponential Family

An exponential family induces a Bregman divergence Dψ

[
θ : θ′] given in (2.16).

Conversely, when a Bregman divergence Dψ

[
θ : θ′] is given, is it possible to find

a corresponding exponential family p(x,θ)? The problem is solved positively by
Banerjee et al. (2005). Consider a random variable x. It specifies a point η′ = x in
the η-coordinates of a dually flat manifold given by ψ. Let θ′ be its θ-coordinates.
The ψ-divergence from θ to θ′, the latter of which is the θ-coordinates of η′ = x, is
written as

Dψ

[
θ : θ′(x)

] = ψ(θ) + ϕ(x) − θ · x. (2.83)

Using this, we define a probability density function written in terms of the divergence
as

p(x,θ) = exp
{−Dψ

[
θ : θ′] + ϕ(x)

} = exp {θ · x − ψ(θ)} , (2.84)

where θ′ is determined from x as the θ-coordinates of η′ = x. Thus, we have an
exponential family derived from Dψ.

The problem is restated as follows: Given a convex function ψ(θ), find a measure
dμ(x) such that (2.8), or equivalently

exp {ψ(θ)} =
∫

exp {θ · x} dμ(x), (2.85)
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is satisfied. This is the inverse of the Laplace transform. A mathematical theory
concerning the one-to-one correspondence between (regular) exponential families
and (regular) Bregman divergences is established in Banerjee et al. (2005).

Theorem 2.2 There is a bijection between regular exponential families and regular
Bregman divergences.

The theorem shows that a Bregman divergence has a probabilistic expression
given by an exponential family of probability distributions. A Bregman divergence
is always written in the form of the KL-divergence of the corresponding exponential
family.

Remark A mixture family M = {p(x,η)} has a dually flat structure, where the
negative entropy ϕ(η) is a convex function. We can define an exponential family of
which the convex function is ϕ(θ). However, this is different from the original M .
Hence, Theorem 2.2 does not imply that a mixture family is an exponential family,
even though it is dually flat.

2.8 Applications of Pythagorean Theorem

A few applications of the generalized Pythagorean Theorem are shown here to illus-
trate its usefulness.

2.8.1 Maximum Entropy Principle

Let us consider discrete probability distributions Sn = {p(x)}, although the fol-
lowing arguments hold even when x is a continuous vector random variable. Let
c1(x), . . . , ck(x) be k random variables, that is, k functions of x . Their expectations
are

E [ci (x)] =
∑

p(x)ci (x), i = 1, 2, . . . , k. (2.86)

We consider a probability distribution p(x) for which the expectations of ci (x) take
prescribed values a = (a1, . . . , ak),

E [ci (x)] = ai , i = 1, 2, . . . , k. (2.87)

There are many such distributions and they form an (n−k)-dimensional submanifold
Mn−k(a) ⊂ Sn specified by a, because k restrictions given by (2.87) are imposed.
This Mn−k is m-flat, because any mixtures of distributions in Mn−k belong to the
same Mn−k .
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When one needs to choose a distribution from Mn−k(a), if there are no other
considerations, one would choose the distribution that maximizes the entropy. This
is called the maximum entropy principle.

Let P0 be the uniform distribution that maximizes the entropy in Sn . The dual
divergence between P ∈ Sn and P0 is written as

Dψ [P0 : P] = ψ (θ0) + ϕ(η) − θ0 · η, (2.88)

where the e-coordinates of P0 are given by θ0, η is the m-coordinates of P and
ϕ(η) is the negative entropy. This is the KL-divergence DK L [P : P0] from P to P0.
Since P0 is the uniform distribution, θ0 = 0. Hence, maximizing the entropy ϕ(η) is
equivalent to minimizing the divergence. Let P̂ ∈ Mn−k be the point that maximizes
the entropy. Then, triangle P P̂ P0 is orthogonal and the Pythagorean relation

DK L [P : P0] = DK L

[
P : P̂

]
+ DK L

[
P̂ : P0

]
(2.89)

holds (Fig. 2.1). This implies that the entropy maximizer P̂ is given by the e-
projection of P0 to Mn−k(a).

Each Mn−k(a) includes the entropy maximizer P̂(a). By changing a, all of these
P̂(a) form a k-dimensional submanifold Ek which is an exponential family, where
the natural coordinates are specified by θ = a (Fig. 2.1),

p̂(x,θ) = exp {θ · c(x) − ψ(θ)} . (2.90)

It is easy to obtain this result by the variational method that maximizes the entropy
ϕ(η) under constraints (2.87).

Fig. 2.1 The family
maximizing entropy under
linear constraints is an
exponential family

Sn
exponential family

P0

P

P
[ ]c( )xE           = a

Mn-k ( )a

[ ]c( )xE           = a

[ ]c( )xE =a
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2.8.2 Mutual Information

Let us consider two random variables x and y and the manifold M consisting of all
p(x, y). When x and y are independent, the probability can be written in the product
form as

p(x, y) = pX (x)pY (y), (2.91)

where pX (x) and pY (y) are respective marginal distributions.
Let the family of all the independent distributions be MI . Since the exponential

family connecting two independent distributions is again independent, the e-geodesic
connecting them consists of independent distributions. Therefore, MI is an e-flat
submanifold.

Given a non-independent distribution p(x, y), we search for the independent
distribution which is closest to p(x, y) in the sense of KL-divergence. This is given
by the m-projection of p(x, y) to MI (Fig. 2.2). The projection is unique and given
by the product of the marginal distributions

p̂(x, y) = pX (x)pY (y). (2.92)

The divergence between p(x, y) and its projection is

DK L
[

p(x, y) : p̂(x, y)
] =

∫
p(x, y) log

p(x, y)

p̂(x, y)
dxdy, (2.93)

which is the mutual information of two random variables x and y. Hence, the mutual
information is a measure of discrepancy of p(x, y) from independence.

The reverse problem is also interesting. Given an independent distribution (2.92),
find the distribution p(x, y) that maximizes DK L

[
p : p̂

]
in the class of distributions

having the same marginal distributions as p̂. These distributions are the inverse image
of the m-projection. This problem is studied by Ay and Knauf (2006) and Rauh
(2011). See Ay (2002), Ay et al. (2011) for applications of information geometry to
complex systems.

MI:independent
distributions

p x y( , )

I( , )X Y

p x y( ),

Fig. 2.2 Projection of p(x, y) to the family MI of independent distributions is the m-projection.
The mutual information I (X, Y ) is the KL-divergence DK L [p(x, y) : pX (x)pY (y)]
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2.8.3 Repeated Observations and Maximum Likelihood
Estimator

Statisticians use a number of independently observed data x1, . . . , xN from the same
probability distribution p(x,θ) in an exponential family M for estimating θ. The
joint probability density of x1, . . . , xN is given by

p (x1, . . . , xN ;θ) =
N∏

i=1

p (xi ,θ) (2.94)

having the same parameter θ. We see how the geometry of M changes by multiple
observations.

Let the arithmetic average of xi be

x̄ = 1

N

N∑

i=1

xi . (2.95)

Then, (2.94) is rewritten as

pN (x̄,θ) = p (x1, . . . , xN ;θ) = exp {Nθ · x̄ − Nψ(θ)} . (2.96)

Therefore, the probability density of x̄ has the same form as p(x,θ), except that x
is replaced by x̄ and the term θ · x − ψ(θ) becomes N times larger.

This implies that the convex function becomes N times larger and hence the
KL-divergence and Riemannian metric (Fisher information matrix) also become N
times larger. The dual affine structure of M does not change. Hence, we may use the
original M and the same coordinates θ even when multiple observations take place
for statistical inference. The binomial distributions and multinomial distributions are
exponential families derived from S2 and Sn by multiple observations.

Let M be an exponential family and consider a statistical model S = {p(x, u)}
included in it as a submanifold, where S is specified by parameter u = (u1, . . . , uk),
k < n. Since it is included in M , the e-coordinates of p(x, u) in M are determined by
u in the form of θ(u). Given N independent observations x1, . . . , xN , we estimate
the parameter u based on them.

The observed data specifies a distribution in the entire M , such that its m-
coordinates are

η̄ = 1

N

∑
xi = x̄. (2.97)

This is called an observed point. The KL-divergence from the observed η̄ to a
distribution p(x, u) in S is written as DK L

[
θ̄ : θ(u)

]
, where θ̄ is the θ-coordinates

of the observed point η̄. We consider a simple case of Sn , where the observed point
is given by the histogram
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p̄(x) = 1

N

N∑

i=1

δ (x − xi ) . (2.98)

Then, except for a constant term, minimizing DK L [ p̄(x) : p(x, u)] is equivalent to
maximizing the log-likelihood

L =
N∑

i=1

log p (xi , u) . (2.99)

Hence, the maximum likelihood estimator that minimizes the divergence is given
by the m-projection of p̄(x) to S. See Fig. 2.3. In other words, the maximum likeli-
hood estimator is characterized by the m-projection.

Remarks

An exponential family is an ideal model to study the dually flat structure and also
statistical inference. The Legendre duality between the natural and expectation pa-
rameter was pointed out by Barndorff-Nielsen (1978). It is good news that the family
Sn of discrete distributions is an exponential family, because any statistical model
having a discrete random variable is regarded as a submanifold of an exponential
family. Therefore, it is wise to study the properties of the exponential family first and
then see how they are transferred to curved subfamilies.

Unfortunately, this is not the case with continuous random variable x . There
are many statistical models which are not subfamilies of exponential families, even
though many are curved-exponential families, that is, submanifolds of exponential
families. Again, the study of the exponential family is useful. In the case of a truly
non-exponential model, we use its local approximation by using a larger exponential
family. This gives an exponential fibre-bundle-like structure to statistical models.
This is useful for studying the asymptotic theory of statistical inference. See Amari
(1985).

Fig. 2.3 The maximum
likelihood estimator is the
m-projection of observed
point to S

u

S

:observed point

u

M
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It should be remarked that a generalized linear model provides a dually flat struc-
ture, although it is not an exponential family. See Vos (1991). A mixture model
also has remarkable characteristics from the point of view of geometry. See Marriott
(2002), Critchley et al. (1993).



Chapter 3
Invariant Geometry of Manifold
of Probability Distributions

We have introduced a dually flat Riemannian structure in the manifolds of the expo-
nential family and the mixture family based on the convexity of the cumulant generat-
ing function (free energy) and the negative entropy, respectively. The KL-divergence
is derived from these convex functions. However, we need justification for this selec-
tion of convex function and divergence. Moreover, such a convex function does not
exist for a general statistical model. Therefore, a reasonable criterion is needed for
introducing a geometrical structure to a manifold of probability distributions. It is
invariance that justifies the above selection.

Invariance requires that a geometrical structure should be invariant when random
variable x is represented in a different form y = y(x), provided y(x) is invert-
ible. This is an idea introduced by Chentsov (1972). We begin with a simpler idea of
information monotonicity by coarse graining, due to Csiszár (1974), a simplified ver-
sion of Chentsov’s invariance. There exists a unique class of decomposable invariant
divergences, known as f -divergences.

3.1 Invariance Criterion

We treat a statistical model
M = {p(x, ξ)} , (3.1)

parameterized by ξ, which forms a manifold with coordinate system ξ. Here, x may
take discrete, continuous and vector values. What is a natural divergence D

[
ξ : ξ′]

between two probability distributions p(x, ξ) and p(x, ξ′)? In answering this ques-
tion, we consider the invariance criterion, which states that the geometry is the same
when random variable x is transformed into y without losing information. We con-
sider a mapping of x to y

y = k(x), (3.2)

© Springer Japan 2016
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which is in general many-to-one, so we cannot recover x from y. Then, information
is lost by this mapping. Let the probability distribution of y be p̄(y, ξ),

p̄(y, ξ) =
∑

x : k(x)=y

p(x, ξ), (3.3)

in the discrete case, which is induced from p(x, ξ) by the mapping y = k(x). In
the continuous case, the probability density p̄(y, ξ) is given by integration. The
divergence D

[
ξ : ξ′] between p(x, ξ) and p

(
x, ξ′) changes to D̄

[
ξ : ξ′] between

p̄(y, ξ) and p̄(y, ξ′). Since divergence D
[
ξ : ξ′] represents the dissimilarity of two

distributions p(x, ξ) and p
(
x, ξ′), it is postulated that it decreases in general by this

mapping,
D̄
[
ξ : ξ′] ≤ D

[
ξ : ξ′] . (3.4)

We call this relation information monotonicity.
Obviously, when k is one-to-one, that is invertible, there is no loss of information

and the equality is required to hold in (3.4). However, there is a case when information
is not lost even when k is not invertible. This is the case when x includes a redundant
part, the distribution of which does not depend on ξ. We may abandon this part
without losing information concerning ξ. The remaining part retains full information.
Statisticians call such a part a sufficient statistic. Its definition is given below.

A function
s = k(x) (3.5)

is called a sufficient statistic when the probability density function p(x, ξ) is decom-
posed as

p(x, ξ) = p̄(s, ξ)r(x). (3.6)

This implies that the probability p(x, ξ) is written as a function of s, except for a
multiplicative term r(x) which does not depend on ξ. The equality is required to
hold in (3.4) when and only when y is a sufficient statistic.

We formally state the invariance criterion, for which the basic idea was originally
due to Chentsov (1972) and which was formulated in this way by Amari and Nagaoka
(2000).

Invariance Criterion: A geometrical structure of M is invariant when it satisfies the
monotonicity (3.4), where the equality holds if and only if y = k(x) is a sufficient
statistic.

We study the class of invariant divergences and invariant Riemannian metrics.
The invariant metric is unique, given by the Fisher information matrix except for a
scale constant (Chentsov 1972).



3.2 Information Monotonicity Under Coarse Graining 53

3.2 Information Monotonicity Under Coarse Graining

3.2.1 Coarse Graining and Sufficient Statistics in Sn

We consider a family Sn of discrete probability distributions, where random
variable x takes on values X = {0, 1, . . . , n}. Let us denote a probability distri-
bution by an (n + 1)-dimensional probability vector p. We divide X into m + 1
subsets X0, X1, . . . , Xm such that

∪ Xa = X, Xa ∩ Xb = ∅, a �= b, (3.7)

where φ is the empty set. This is a partition of X (Fig. 3.1).
Assume that we cannot observe x directly, but know the subset to which x belongs.

This is the case when X is coarse-grained. We then introduce a coarse-grained random
variable y, taking on values {0, 1, . . . , m}, where y = a implies that x belongs
to Xa . Let its distribution be denoted by (m + 1)-dimensional probability vector
p̄ = ( p̄0, . . . , p̄m). Coarse graining leads to a new distribution p̄ in Sm given by

p̄a =
∑
i∈Xa

pi . (3.8)

Let D
[

p : q
]

be a divergence between two distributions p and q. It is said to be
additive or decomposable when it is written in an additive form of componentwise
divergences,

D[ p : q] =
n∑

i=0

d (pi , qi ) (3.9)

for some function d(p, q). The divergence D[ p : q] changes to D̄
[

p̄ : q̄
]

by coarse
graining,

D̄
[

p̄ : q̄
] =

m∑
a=0

d ( p̄a, q̄a) . (3.10)

The information monotonicity criterion requires

D[ p : q] ≥ D̄
[

p̄ : q̄
]
. (3.11)

Fig. 3.1 Partition of X into
m + 1 subsets X :

Y :

n

X0 X1 Xm

...

...

...... ...

0 1 2
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When does the equality hold in (3.11)? This occurs in the case when there is
no loss of information by coarse graining. Since y is a function of x , we have the
following decomposition:

p(x, ξ) = p(x, y, ξ) = p(y, ξ)p(x |y, ξ), (3.12)

where ξ is a coordinate system of Sn . We see that y is a sufficient statistic when
p(x |y, ξ) does not depend on ξ. In this case, the conditional distributions of p(x |y, ξ)

and q(x |y, ξ′) are equal for two distributions p(x) = p(x, ξ) and q(x) = p(x, ξ′),
that is,

p (x = j |y = a, ξ ) = p
(
x = j

∣∣y = a, ξ′ ) . (3.13)

3.2.2 Invariant Divergence

When a divergence is written in the form

D f [ p : q =
∑

pi f

(
qi

pi

)
, (3.14)

where f is a differentiable convex function satisfying

f (1) = 0, (3.15)

it is called an f -divergence. The f -divergence was introduced by Morimoto (1963),
Ali and Silvey (1966) and Csiszár (1967). It is easy to prove that this satisfies the
criteria of divergence, by expanding D f [ p : p + d p] in the Taylor series, although
it is not a Bregman divergence in general.

Theorem 3.1 An f -divergence is invariant and decomposable. Conversely an
invariant and decomposable divergence is an f -divergence, except for the case of
n = 1.

Proof We first prove that an f -divergence satisfies the criterion of information
monotonicity. Consider a simple partition where X0 = {1, 2} and all the other Xa are
singleton sets. That is, x = 1, 2 are put in a subset X0 but all the other x remain as
they are. We prove only this case, but other cases can be proved similarly. We need
to prove

p1 f

(
q1

p1

)
+ p2 f

(
q2

p2

)
≥ (p1 + p2) f

(
q1 + q2

p1 + p2

)
. (3.16)
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By introducing

u1 = q1

p1
, u2 = q2

p2
, (3.17)

the right-hand side of (3.16) is written as

(p1 + p2) f

(
p1

p1 + p2
u1 + p2

p1 + p2
u2

)
. (3.18)

Since f is convex,

(p1 + p2) f

(
p1

p1 + p2
u1 + p2

p1 + p2
u2

)
≤ p1 f (u1) + p2 f (u2) , (3.19)

which proves the information monotonicity.
Conversely, assume that the information monotonicity holds for a decomposable

divergence (3.9). Then, the equality holds when (3.13) is satisfied, that is, u1 = u2

in the present case. The equality is written as

d (p1, q1) + d (p2, q2) = d (p1 + p2, q1 + q2) . (3.20)

By putting
k(p, u) = d(p, up), (3.21)

we have
k (p1, u) + k (p2, u) = k (p1 + p2, u) (3.22)

for u > 0, and hence k(p, u) is linear in p. So we have

k(p, u) = f (u)p, (3.23)

implying

d(p, q) = p f

(
q

p

)
. (3.24)

This proves the theorem. �

Remark 1 The above proof is not valid when n = 1, because coarse graining causes
m = 0. The following is shown by Jiao et al. (2015): There exists a class of invariant
divergences which are not necessarily f -divergences when n = 1. So the case with
n = 1 is special and Jiao et al. (2015) derived a general class of invariant divergences
when n = 1.
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Remark 2 When we treat non-decomposable divergences, there are invariant diver-
gences which are not f -divergences. A function of f -divergence is invariant but is
not decomposable in general. A simple example is

D[ p : q] = D f [ p : q] + {D f [ p : q]}2
. (3.25)

Further, an adequate nonlinear function of two f -divergences D f1 and D f2 is invariant
but is not an f -divergence.

We will show in Part II that any invariant divergence gives the same geometry
called the α-structure.

When a linear term is added to a convex function f ,

f̄ (u) = f (u) + c(u − 1), (3.26)

where c is a constant, f̄ is also convex. It is easy to see

D f̄ [ p : q] = D f
[

p : q
]
, (3.27)

so (3.26) does not change the divergence. Hence, without loss of generality, we can
always use a convex function satisfying

f (1) = 0, f ′(1) = 0. (3.28)

Moreover, since
Dcf [ p : q] = cD f [ p : q] (3.29)

holds for another constant c > 0, the constant c determines the scale of divergence.
To fix the scale, we use f that satisfies

f ′′(1) = 1. (3.30)

Definition 3.1 A convex function f satisfying (3.28) and (3.30) is said to be stan-
dard. An f -divergence derived from a standard f is a standard f -divergence.

When D f
[

p : q
]

is a standard f -divergence, its dual D∗
f [ p : q] = D f [q : p] is

also a standard f -divergence. To show this, define

f ∗(u) = u f

(
1

u

)
. (3.31)

Then, f ∗ is a standard convex function when f is, and we have

D f ∗ [ p : q] = D f [q : p]. (3.32)
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3.3 Examples of f -Divergence in Sn

3.3.1 KL-Divergence

For
f (u) = − log u, (3.33)

the derived divergence is the KL-divergence

D f [ p : q] =
∑

pi log
pi

qi
. (3.34)

The dual of f is
f ∗(u) = u log u. (3.35)

The derived divergence is the dual of the KL-divergence

D f ∗ [ p : q] = DK L [q : p], (3.36)

which coincides with the divergence derived from the cumulant generating
function ψ.

3.3.2 χ2-Divergence

For

f (u) = 1

2
(u − 1)2, D f [ p : q] = 1

2

∑ (pi − qi )
2

pi
. (3.37)

This is known as the Pearson χ2-divergence.

3.3.3 α-Divergence

Let α be a real parameter. We define the α-function by

fα(u) = 4

1 − α2

(
1 − u

1+α
2

)
, α �= ±1. (3.38)
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The derived divergence is the α-divergence (Amari 1985; Amari and Nagaoka 2000)
given by

Dα[ p : q] = 4

1 − α2

(
1 −

∑
p

1−α
2

i q
1+α

2
i

)
, α �= ±1. (3.39)

The dual of the α-function is the −α-function. Hence, the dual of the α-divergence
is the −α-divergence,

Dα

[
p : q

] = D−α

[
q : p

]
. (3.40)

When α = 0, we have

f (u) = 4(1 − √
u), D f [ p : q] = 2

∑(√
pi − √

qi
)2

, (3.41)

which is known as the square of the Hellinger distance.
We extend the α-function (3.38) to the case of α = ±1, by taking the limit

α → ±1. Then,

fα(u) =
{

u log u, α = 1,

− log u, α = −1.
(3.42)

The derived divergences are

Dα[ p : q] =
{∑

qi log qi

pi
, α = 1,∑

pi log pi

qi
, α = −1.

(3.43)

Hence, the KL-divergence is −1-divergence and its dual is 1-divergence.
For

f (u) = |1 − u| (3.44)

which is not differentiable, and hence D f is not a divergence by our definition, D f

is a symmetric function of p and q,

D f [ p : q] = 1

2

∑
|pi − qi | , (3.45)

known as the variational distance.
The square of the Euclidean distance,

D[ p : q] =
∑

(pi − qi )
2 , (3.46)

is a divergence. But it is not an f -divergence and is not invariant.
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3.4 General Properties of f -Divergence
and KL-Divergence

3.4.1 Properties of f -Divergence

The following properties hold in Sn .

(1) An f -divergence D f [ p : q] is convex with respect to both p and q.
(2) It is bounded from above as

0 ≤ D f [ p : q] ≤ lim
u→0

{
f (u) + u f

(
1

u

)}
, (3.47)

0 ≤ D f [ p : q] ≤
∑

(pi − qi ) f ′
(

pi

qi

)
. (3.48)

(3) For α ≥ 1,
Dα[ p : q] = ∞, (3.49)

when p(x) = 0 and q(x) �= 0 hold for some x .
(4) For α ≤ −1,

Dα[ p : q] = ∞, (3.50)

when p(x) �= 0 and q(x) = 0 hold for some x .

Properties (3) and (4) hold for the KL-divergence and its dual, because they are
±1-divergences. They lead to the following results of approximation of a probability
distribution by using the α-divergence. Given p ∈ Sn , we search for the distribution
p̂S that minimizes the divergence from p to a smooth submanifold S ⊂ Sn ,

p̂S = arg min
q∈S

Dα[ p : q]. (3.51)

Then, the following holds:

(5) Zero-forcing: When α ≥ 1, the best approximation p̂S in the closure of S satisfies

p̂S(x) = 0 (3.52)

for x at which p(x) = 0.
(6) Zero-avoidance: When α ≤ −1, the best approximation p̂S in the closure of S

satisfies
p̂S(x) �= 0 (3.53)

for x at which p(x) �= 0.
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3.4.2 Properties of KL-Divergence

A. Large deviation
Let p be a distribution in Sn from which N independent data x(1), . . . , x(N ) are
generated. The empirical distribution of the observed data is given by p̂,

p̂i = 1

N

N∑
t=1

δi {x(t)} = Ni

N
, (3.54)

where Ni is the number that x = i is observed among N data. This is the maximum
likelihood estimator. How far is p̂ from the true p? The probability distribution of p̂
is evaluated by the KL-divergence asymptotically when N is large.

Sanov Lemma. The probability of p̂ is asymptotically given by

Prob
{

p̂; p
} = exp

{−N DK L
[

p̂ : p
]}

, (3.55)

that is, the probability decays exponentially as N increases where the exponent of
decay is DK L

[
p̂ : p

]
.

The proof is given by evaluating the distribution of p̂, a multinomial distribution,
when N is large, which we omit. When p̂ is close to p, by putting

ε = 1√
N

(
p̂ − p

)
(3.56)

and expanding N DK L
[

p̂ : p
]
, we have the central limit theorem.

Central Limit Theorem The distribution of p̂ is asymptotically Gaussian with mean
p and covariance

E
[(

p̂i − pi
) (

p̂ j − p j
)] = 1

N
gi j . (3.57)

Let A be a region in Sn . Then, we have the theorem of large deviation, which is
useful in information theory and statistics (Fig. 3.2).

Fig. 3.2 e-projection of p
to A

A
pp*A

e-projection
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Large Deviation Theorem The probability that p̂ is included in A is given asymp-
totically by

Prob
{

p̂ ∈ A
} = exp

{−N DK L
[

p∗
A : p

]}
, (3.58)

where
p∗

A = arg min
q∈A

DK L
[
q : p

]
. (3.59)

When A is a closed set having a boundary, p∗
A is given by e-projecting p to the

boundary of A.

B. Symmetrized KL-divergence and Fisher information
The Riemannian distance between two points p and q is given by the minimum of
the distance along all curves ξ(t) connecting p and q such that ξ(0) = p, ξ(1) = q,
that is,

s = min

1∫

0

√
gi j (t)ξ̇i ξ̇ j dt. (3.60)

Since the KL-divergence is

DK L [ξ(t) : ξ(t + dt)] = 1

2
gi j ξ̇

i ξ̇ j dt2, (3.61)

there would be some relation between the KL-divergence and the integration of the
Fisher information along a curve. Let us consider the e-geodesic and the m-geodesic
connecting two points p and q,

γe : ξe(t) = exp {(1 − t) log p + t log q − ψ(t)} , (3.62)

γm : ξm(t) = (1 − t) p + tq. (3.63)

They are exponential and mixture families, respectively. Let ge(t) and gm(t) be the
Fisher information along the curves,

ge(t) = gi j ξ̇
i
e(t)ξ̇

j
e (t), (3.64)

gm(t) = gi j ξ̇
i
m(t)ξ̇ j

m(t). (3.65)

Then, we have the following theorem.

Theorem 3.2 The symmetrized KL-divergence is given by the integration of the
Fisher information along the e-geodesic and the m-geodesic,
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1

2
{DK L [ p : q] + DK L [q : p]}

=
1∫

0

ge(t)dt =
1∫

0

gm(t)dt. (3.66)

The proof is technical and is omitted.

3.5 Fisher Information: The Unique Invariant Metric

Since an f -divergence is invariant, the Riemannian metric derived from it is invariant.
We can easily calculate the metric gi j from an f -divergence by the Taylor expansion,

D f [p(x, ξ) : p(x : ξ + dξ)] =
∫

p(x, ξ) f

{
p(x, ξ + dξ)

p(x, ξ)

}
dx = 1

2
gi j (ξ)dξi dξ j .

(3.67)
A simple calculation gives the following lemma.

Lemma Any standard f -divergence gives the same Riemannian metric which is the
Fisher information matrix

gi j = E
[
∂i log p(x, ξ)∂ j log p(x, ξ)

]
, (3.68)

where

∂i = ∂

∂ξi
. (3.69)

Chentsov (1972) proved a stronger theorem that the Fisher information matrix
is the unique invariant metric of Sn . He used the framework of category theory. We
show a simpler proof due to Campbell (1986).

Consider a series of Sn, n = 1, 2, 3, . . ., and reformulate the invariance criterion.
We consider coarse graining of Sn by a partition of X = {0, 1, 2, . . . , n} to Y =
{A0, A1, . . . , Am}, where n ≥ m. Random variable x taking on values 0, 1, . . . , n is
reduced to random variable y taking on values 0, 1, . . . , m, such that y = i when x
is included in Ai . Obviously, probability distribution p ∈ Sn is mapped to q ∈ Sm

by this coarse graining. It defines a mapping f from Sn to Sm

f : p �→ q ; qi =
∑
j∈Ai

p j . (3.70)

Conversely, we consider a mapping h from Sm to Sn , which is determined by an
arbitrary conditional probability distribution,

ri j = Prob {x = i | y = j} . (3.71)
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hS2

S3

S2

h

Fig. 3.3 Embedding of S2 in S3 (m = 2, n = 3)

Given y = j , it generates x = i stochastically based on ri j . We define a mapping by

h : q �→ p ; pi = ri j q j . (3.72)

Given y of which the probability is q, the probability distribution p = hq of x is
given by (3.72). The mapping h which depends on ri j embeds Sm in Sn and it satisfies

f ◦ h = Id, (3.73)

where Id is the identity mapping (see Fig. 3.3).
Consider a problem of estimation of q ∈ Sm by observing random variable y.

When Sm is embedded in a larger manifold Sn by (3.72), the random variable is x .
However, x includes a redundant part for estimating q. y is a sufficient statistic for
estimating q.

The invariance criterion claims that the geometry of Sm is the same as the geometry
of embedded hSm in the larger manifold Sn . In particular, the inner product of two
basis vectors in Sm should be the same as that in the embedded image. Now we state
the theorem of Chentsov.

Theorem 3.3 The invariant metric is unique, given by the Fisher information to
within a constant factor.

Proof We use Rn
+ to prove the theorem, considering Sn−1 as its subspace constrained

by
∑

pi = 1. When m = n, the mapping f is only a permutation of indices. We
consider the center of Sn−1,

p̄ =
(

1

n
, . . . ,

1

n

)
∈ Rn

+. (3.74)
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It is invariant under the permutation group of index i . So the inner product of two
basis vectors ei and e j in R+

n is invariant under the permutation of indices. Hence,
we put

gn
i j ( p̄) = B(n), for any i, j ; i �= j, (3.75)

gn
ii ( p̄) = A(n) + B(n), for any i, (3.76)

or
gn

i j ( p̄) = A(n)δi j + B(n). (3.77)

When p is in Sn−1, its small deviation δ p inside Sn−1 satisfies

n∑
i=1

δ pi = 0. (3.78)

Since δ p is a tangent vector of Sn−1,

∑
Zi = 0 (3.79)

holds for any tangent vector Z = Zi ei of Sn−1.
Therefore, we may put B(n) = 0 when calculating the inner product of two

tangent vectors of Sn−1. B(n) is responsible only for the normal direction to Sn−1.
So, we put

gn
i j ( p̄) = A(n)δi j . (3.80)

Let us consider a point

q =
(

k1

n
,

k2

n
, . . . ,

km

n

)
∈ Sm−1, (3.81)

where ki are integers, satisfying
∑

ki = n. We then consider the following embed-
ding of Sm−1 in Sn−1 given by the conditional distributions

ri j =
{ 1

k j
, i ∈ A j ,

0, otherwise,
(3.82)

where
{

A j
}

is a partition of {0, 1, . . . , n} such that A j includes k j elements. Then,
q is mapped to the center of Sn−1,

hq = p̄ =
(

1

n
, . . . ,

1

n

)
. (3.83)



3.5 Fisher Information: The Unique Invariant Metric 65

The basis vector em
1 ∈ Rm

+ is mapped to

ẽn
1 = 1

k1

(
en

1 + · · · en
k1

)
(3.84)

in Rn
+ by this embedding. Similar equations hold for other en

i , i = 2, 3, . . . , m. The
inner product is equal to

gm
11(q) = 〈em

1 , em
1 〉 = 〈ẽn

1, ẽn
1〉 =

〈
1

k1

k1∑
i=1

en
i ,

1

k1

k1∑
i=1

en
i

〉
= 1

k1
gn

11 ( p̄) = A(n)

k1
.

(3.85)
Hence, we have

gm
11(q) = nc

k1
= c

q1
. (3.86)

Since the constant c is used only to determine the scale of the Fisher information,
we may put c = 1. Similarly,

gm
ii (q) = n

ki
= 1

qi
. (3.87)

This holds only at the points where qi are rational numbers, but because of the
continuity, it holds for any q. This proves the theorem. �

Remark We can prove the uniqueness of the cubic tensor Ti jk defined by

Ti jk = E
[
∂i log p(x, ξ)∂ j log p(x, ξ)∂k log p(x, ξ)

]
(3.88)

under the invariance criterion in a similar way. This will be used to study the unique-
ness of the α-connection in Part II.

3.6 f -Divergence in Manifold of Positive Measures

We extend the notion of invariance from Sn to Rn
+ by using the information

monotonicity under coarse graining. We can prove that the only invariant decompos-
able divergence is an f -divergence, since the proof of Theorem 4.1 is also valid for
Rn

+. An f -divergence is

D f [m : n] =
∑

mi f

(
ni

mi

)
, (3.89)

http://dx.doi.org/10.1007/978-4-431-55978-8_4


66 3 Invariant Geometry of Manifold of Probability Distributions

m, n ∈ Rn
+, for a manifold of positive measures Rn

+, where f is a standard convex
function satisfying (3.28) and (3.30). We need to use a standard convex function to
define a divergence in Rn

+, because (3.89) does not satisfy the criteria of divergence
for a general convex f . The criteria are satisfied when a standard convex function f
is used.

We can calculate the invariant Riemannian metric induced in Rn
+ by an

f -divergence.

Theorem 3.4 The Riemannian metric in Rn
+ induced by an invariant divergence is

the Euclidean metric

gi j (m) = 1

mi
δi j . (3.90)

Proof It is easy to derive (3.90) by the Taylor expansion of (3.89)

D f [m : m + dm] =
∑

mi f

(
1 + dmi

mi

)

=
∑ f ′′(1)

2mi
dm2

i , (3.91)

where f ′′(1) = 1. By using a new coordinate system given by

ξi = 2
√

mi , (3.92)

the square of an infinitesimal distance is given as

ds2 =
∑(

dξi
)2

, (3.93)

showing that the manifold is Euclidean and the coordinate system is
orthonormal. �

It should be noted that manifold Sn is a submanifold of R+
n+1. The constraint∑

pi = 1 becomes ∑(
ξi
)2 = 4 (3.94)

in the new coordinate system. Hence, Sn is a sphere in a Euclidean space, so it is
curved.

As an important special case of f -divergence, we introduce the α-divergence,
which is previously defined in Sn , to Rn

+. It is defined by using the standard α-
function,

fα(u) =

⎧
⎪⎨
⎪⎩

4
1−α2

(
1 − u

1+α
2

)
− 2

1−α
(u − 1), α �= ±1,

u log u − (u − 1), α = 1,

− log u + (u − 1), α = −1.

(3.95)
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Definition The α-divergence is defined in Rn
+ by

Dα[m : n] =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

4
1−α2

∑{
1−α

2 mi + 1+α
2 ni − m

1−α
2

i n
1+α

2
i

}
, α �= ±1,

∑{
mi − ni + ni log ni

mi

}
, α = 1,

∑{
ni − mi + mi log mi

ni

}
, α = −1.

(3.96)

When both m and n satisfy the normalization condition,

∑
mi =

∑
ni = 1, (3.97)

they are probability distributions and the α-divergence is equal to that in a manifold
of probability distributions.

Remarks

There is a long history of studies on geometry of manifolds of probability distri-
butions. C.R. Rao is believed to have been the first who introduced a Riemannian
metric by using the Fisher information matrix (Rao 1945). This was work he did at
the age of twenty-four, and the famous Crámer–Rao theorem was presented in the
same seminal paper. It is a monumental work from which Information Geometry
has emerged. Jeffreys (1946) used the square root of the determinant of the Fisher
metric, which is the Riemannian volume element, as an invariant prior distribution
over the manifold in Bayesian statistics. However, there was no such concept in the
first edition of his famous book, “Probability Theory”, published in 1939 (Jeffreys
1939). It appeared in the second edition (Jeffreys 1948; see also Jeffreys 1946).

It was a big surprise that a hidden prehistory was uncovered by Stigler (2007)
(Frank Nielsen kindly let me know of this paper). In 1929, Harold Hotelling spent
nearly half a year at Rothamsted working with R.A. Fisher on establishing a founda-
tion for mathematical statistics. He submitted a paper entitled “Spaces of statistical
parameters” to the American Mathematical Society Meeting in 1929 (which, in his
absence, was read by O. Ore). The paper has never been published, so his idea has
become entombed and remains unknown. He stated in the paper that the Riemannian
metric is given by the Fisher information matrix in a statistical manifold. Moreover,
he remarked that the manifold of a location-scale statistical model has a constant
negative curvature. Incidentally, I discovered this fact in 1958 when I was a master’s
student, and this was the origin of my study of information geometry.

After Rao, there appeared a number of works using the Riemannian structure, e.g.,
James (1973). It was Chentsov (1972) who introduced the invariance criterion for
defining the geometry of a statistical manifold. He proved that the Fisher information
matrix is the only invariant metric in Sn . Moreover, he obtained the class of invariant
affine connections (α-connections studied in Part II). Unfortunately, his work was
published only in Russian, so his contributions did not become popular in the western
world until an English translation appeared in 1982. Later, Efron (1975) investigated
old unpublished calculations by R.A. Fisher and elucidated the results by defining the
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statistical curvature of a statistical model. He showed that the higher-order efficiency
of statistical estimation is given by the statistical curvature which is the e-curvature
defined in Part II. This work was commented on by A.P. Dawid in discussions of
Efron’s paper, where the e- and m-connections were suggested.

Following Efron’s and Dawid’s works, Amari (1982) further developed the dif-
ferential geometry of statistical models and elucidated its dualistic nature. It was
applied to statistical inference to establish a higher-order statistical theory (Amari
1982, 1985; Kumon and Amari 1983). The formal theory of a dually flat manifold
was first proposed by Nagaoka and Amari (1982), which included the Pythagorean
theorem and projection theorem. However, it was not published as a journal paper,
because it was rejected by major journals. The editor of the Annals of Probabil-
ity asked me to withdraw the paper, because he had approached seven reviewers
but none reviewed it seriously. So he concluded that most probabilists would not
have any interest in the direction of this research. A reviewer for the Zeitschrift
für Wahrsceinlichkeitstheorie und Verwandte Gebiete (Theory of Probability and its
Applications) sent me a letter stating that the paper was useless, because no essential
relation exists between statistics and differential geometry. He also pointed out that
the differential geometry of this paper is different from that in textbooks so it would
be dubious. (We proposed a new framework of duality in differential geometry.) So
it was rejected. Several years passed and thirdly a reviewer in IEEE Transactions
on Information Theory wrote that the theory was now well known around the world
and the paper submitted included few new ideas. This was because a workshop on
this subject was organized in London in 1984 by Sir D. Cox, and my “Springer
Lecture Notes” (Amari 1985) were published. Since then, information geometry has
become widely known and a number of competent researchers have joined from the
fields of statistics, vision, optimization, machine learning, etc. Many international
conferences have been organized on this subject.

However, a mathematically rigorous foundation involves difficulty in the case of
the function space of probability density functions. This is because the topology of
the space of p(x) is different from that of the space of log p(x). There is a series
of studies given by Pistone and his coworkers (Pistone and Sempi 1995; Pistone
and Rogatin 1999; Cena and Pistone 2007; Pistone 2013). See also Grasselli (2010).
Newton (2012) gave a theory based on a Hilbert space, in the framework that p(x)

has finite entropy. Here, p(x), a probability density function with respect to measure
μ(x), is mapped onto a Hilbert space by using the following representation of p(x):

�[p] = p(x) + log p(x), (3.98)

where

Eμ

[{p(x)}2] < ∞, Eμ

[
log2 p(x)

]
< ∞ (3.99)

are presumed. J. Jost and his coworkers are developing a rigorous theory in Leipzig,
preparing a monograph. See Ay et al. (2013).
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Information geometry uses the e- and m-geodesic connecting two distributions
p(x) and q(x), KL-divergence DK L [p(x) : q(x)], the Pythagorean and projection
theorems and the orthogonality of two curves. Therefore, we want to have a frame-
work in which the above structures are guaranteed. We need to search for mild
regularity conditions which give such a framework (cf. Pistone 2013; Newton 2012).
Fukumizu (2009) proposed a novel idea of the kernel exponential family for treating
statistical manifolds with function degrees of freedom.



Chapter 4
α-Geometry, Tsallis q-Entropy
and Positive-Definite Matrices

An f -divergence is not necessarily of the Bregman type. Hence, the invariant
geometry induced from an f -divergence does not necessarily give a dually flat struc-
ture. It is proved that the KL-divergence, which is an f -divergence, is the unique
class of decomposable divergences that are invariant and flat in Sn(n > 1). However,
when we study a manifold Rn

+ of positive measures, there are other invariant, flat and
decomposable divergences. They are α-divergences, including the KL-divergence as
a special case. The present chapter studies the invariant α-structure originating from
the α-divergence. It includes the α-geodesic, α-mean, α-projection, α-optimization
and α-family of probability distributions.

We also remark that the geometry originating from Tsallis q-entropy (Tsallis
1988, 2009; Naudts 2011) is nothing other than the α-geometry, where α = 2q − 1.
We show another type of flat structure, called conformal flattening, induced from
the Tsallis q-entropy. It is related to the escort probability distribution. Extending
it, we identify a universal class of dually flat divergences in Rn

+. We further study a
general invariant flat structure of the manifold of positive-definite matrices, which is
important in its own right.

4.1 Invariant and Flat Divergence

4.1.1 KL-Divergence Is Unique

A divergence is flat when it induces a flat structure in the underlying manifold.
A Bregman divergence is flat. We begin with the following well-known result in Sn .
See Csiszár (1991) for the characterization of the KL-divergence.

The original version of this chapter was revised: The incomplete texts have been updated.
The correction to this chapter is available at https://doi.org/10.1007/978-4-431-55978-8_14

© Springer Japan 2016, corrected publication 2020
S. Amari, Information Geometry and Its Applications,
Applied Mathematical Sciences 194, https://doi.org/10.1007/978-4-431-55978-8_4
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Theorem 4.1 The KL-divergence and its dual are the only decomposable, flat and
invariant divergences, except for the special case of n = 1.

A proof of the present theorem is given as a corollary of Theorem 4.2 in the next
subsection. It will be shown in Part II without assuming the decomposability that
the KL-divergence is the unique canonical divergence in a dually flat manifold of
probability distributions.

4.1.2 α-Divergence Is Unique in Rn+

We begin with a theorem due to Amari (2009).

Theorem 4.2 The α-divergences form the unique class of decomposable, flat and
invariant divergences of Rn

+.

Proof We first prove that an α-divergence is a Bregman divergence in the manifold
Rn

+. This does not imply that its affine coordinate system is the measure vector
m = (mi ) ∈ Rn

+ itself. We define a new coordinate system θ = (
θi

)
by

θi = hα (mi ) = m
1−α

2
i , α �= 1 (4.1)

and call θi the α-representation of a positive measure mi . Then,

mi = h−1
α (θi ) = (

θi
) 2

1−α (4.2)

is a convex function of θi when |α| < 1. Therefore,

ψα(θ) = 1 − α

2

∑ (
θi

) 2
1−α = 1 − α

2

∑
mi (4.3)

is a convex function of θ for α > −1 and the accompanying affine coordinate system
is θ. The dual affine coordinate system η is given by η = ∇ψα(θ) as

ηi = (
θi

) 1+α
1−α = h−α (mi ) . (4.4)

Hence, it is the −α-representation of mi . The dual convex function is

ϕα (η) = ψ−α (η) . (4.5)

Calculations show that the Bregman divergence

Dα [θ1 : θ2] = ψα (θ1) + ψ−α

(
η2

) − θ1 · η2 (4.6)

is the α-divergence defined in (3.96).

http://dx.doi.org/10.1007/978-4-431-55978-8_3
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Conversely, assume that an f -divergence

D f [m : n] =
∑

mi f

(
ni

mi

)
(4.7)

is a Bregman divergence and further that its affine coordinate system θ = (
θi

)
is

connected with mi componentwise as

θi = k (mi ) . (4.8)

The dual affine coordinates are
ηi = k∗ (mi ) (4.9)

for some function k∗. Since the cross term of θ and η in the divergence is included
only in the last term of (4.6), the relation

mi f

(
ni

mi

)
= k(mi )k

∗(ni ) (4.10)

must hold for each i . By differentiating it with respect to ni and omitting suffix i for
brevity, we have

f ′
( n

m

)
= k(m)k∗′(n). (4.11)

By putting x = n and y = 1/m, we have

f ′(xy) = k

(
1

y

)
k∗(x). (4.12)

Further, by putting
h(u) = log f ′(u), (4.13)

the logarithm of (4.12) is written in the form

h(xy) = s(x) + t (y). (4.14)

for some functions s and t . By differentiating both sides with respect to x , we have

h(u) = −c log u, (4.15)

where c is a constant. From this, we see that f is of the form

f (u) = −u
1+α

2 (4.16)
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except for a scale factor and a constant. This is a convex function for |α| < 1 but is
not a standard f -function. By transforming it to the standard form, we have

f (u) = 4

1 − α2

(
1 − α

2
+ 1 + α

2
u − u

1+α
2

)
, (4.17)

and the theorem is proved. �

We did not mention the case of α = 1. If we modify the definition (4.1) of the
α-representation as

hα(m) = 2

1 − α

(
m

1−α
2 − 1

)
, (4.18)

log m is given by the limit α → 1. By using this, the proof holds even in the limiting
case of α = ±1.

Sn is a submanifold of Rn+1
+ , where the constraint

n∑

i=0

mi = 1 (4.19)

is imposed. The constraint is rewritten in the θ-coordinate system as

m∑

i=0

h−1
α

(
θi

) = 1. (4.20)

This is a nonlinear constraint for α �= −1. So Sn is not dually flat but curved for
general α, except for the linear constraint case of α = −1. When α = 1, it is linear in
the dual coordinate system. Hence, the α-divergence gives a flat structure to Sn only
when α = ±1, that is the KL-divergence and its dual. Therefore, the KL-divergence
is the only invariant, flat and decomposable divergence in Sn , proving Theorem 4.1.

Remark Jiao et al. (2015) proved that the KL-divergence is the only invariant diver-
gence of the Bregman type in Sn without assuming the decomposability. It is also
proved in the geometrical framework that the canonical divergence of Sn is the
KL-divergence in Part II. The case of n = 1 is fully studied in Jiao et al. (2015),
characterizing the class of invariant Bregman-type divergences in Sn . The following
is proved:

(1) An invariant decomposable divergence is an f -divergence when n > 1, but
there is a new class of divergences which are not necessarily f -divergences
when n = 1.

(2) An invariant Bregman divergence is the KL-divergence for any n.

From the point of view of geometry, a one-dimensional manifold S1 is a curve so its
curvature always vanishes. The case with n = 1 is special in this sense.
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4.2 α-Geometry in Sn and Rn+

4.2.1 α-Geodesic and α-Pythagorean Theorem in Rn+

The affine and dual affine coordinates of Rn
+ due to the α-divergence are given

by (4.1) and (4.4), respectively. An α-geodesic passing through θ0 is linear in the
α-representation θ of (4.1), written as

θ(t) = t a + θ0, (4.21)

where t is the parameter of the geodesic and a is a constant vector, representing
the tangent direction of the geodesic. In particular, the α-geodesic connecting two
measures m1 and m2 is

mi (t)
1−α

2 =
{
(1 − t)m

1−α
2

1i + tm
1−α

2
2i

}
. (4.22)

Dually, a −α-geodesic is linear in the −α-representation η of (4.4),

η(t) = t a + η0. (4.23)

The −α-geodesic connecting m1 and m2 is

mi (t)
1+α

2 =
{
(1 − t)m

1+α
2

1i + tm
1+α

2
2i

}
. (4.24)

We have the α-version of the Pythagorean theorem and projection theorem.

Theorem 4.3 Given three positive measures m, n, k, when the α-geodesic connect-
ing m and n is orthogonal to the −α-geodesic connecting n and k,

Dα [m : k] = Dα[m : n] + Dα[n : k]. (4.25)

Theorem 4.4 Given m and a submanifold S in Rn
+, the point k̂ in S that minimizes

the α-divergence
k̂ = arg min

k
Dα[m : k], k ∈ S, (4.26)

is the α-projection of m to S. When S is an −α-flat submanifold, the projection is
unique.

Remark When α = −1, Dα[m : n] is the KL-divergence and the theorems are the
Pythagorean and projection theorems given in Chap. 1.

http://dx.doi.org/10.1007/978-4-431-55978-8_1
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4.2.2 α-Geodesic in Sn

Although the α-divergence is a Bregman divergence in Rn+1
+ , it is not a flat divergence

in Sn for α �= ±1. The α-geodesic connecting two probability vectors p and q in
Rn+1

+ , given by (4.22) with m1 = p and m2 = q, is not included in Sn . However, we
can normalize (4.22) to obtain the probability vector p(t),

p
1−α

2
i (t) = c(t)

{
(1 − t)p

1−α
2

i + tq
1−α

2
i

}
, (4.27)

where c(t) is determined from
n∑

i=0

pi (t) = 1. (4.28)

This is included in Sn . We call it the α-geodesic of Sn . We can define the α-projection
in Sn by using the α-geodesic.

4.2.3 α-Pythagorean Theorem and α-Projection Theorem
in Sn

Since Rn+1
+ isα-flat, its submanifold Sn enjoys an extended version of the Pythagorean

theorem. The following theorem is due to Kurose (1994) and it holds for a general
dual manifold having a constant curvature.

Theorem 4.5 Let p, q and r be three points in Sn. When the α-geodesic connecting
p and q is orthogonal to the −α-geodesic connecting q and r ,

Dα[ p : r] = Dα[ p : q] + Dα[q : r] − 1 − α2

4
Dα[ p : q]Dα[q : r]. (4.29)

We omit the proof. This is a generalization of a theorem in the spherical geometry,
which has a constant curvature.

The projection theorem follows from it.

Theorem 4.6 Let M be a submanifold of Sn. Given p, the point in M that minimizes
the α-divergence from p to M is given by the α-geodesic projection of p to M.

We can easily see from (4.29) that the α-projection gives the critical point of
the α-divergence. See Matsuyama (2003) for the minimization of α-divergence and
α-projection in ICA (independent component analysis).
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4.2.4 Apportionment Due to α-Divergence

We show an interesting application of α-divergence in social science. There are
many methods of deciding the numbers of seats proportionately to the populations
in states, since the number of seats in a state must be an integer, whereas the ratios
of populations are rational numbers. Let p = (pi ) be the population quotient vector

pi = Ni

N
, (4.30)

where Ni is the populations of state i and N = ∑
Ni . Let q = (qi ) be the apportion-

ment quotient vector and n be the total number of seats such that nqi is the number
of seats assigned to state i .

We cannot simply put q = p, because nqi should be an integer. Hence, we search
for a q that is a rational vector of the form qi = ni/n closest to p. We can use the
α-divergence Dα[ p : q] to show the closeness of p and q and search for a rational
vector q that minimizes Dα[ p : q]. There have been proposed many algorithms to
decide q. Ichimori (2011) and Wada (2012) showed that most existing methods are
interpreted as minimization of some α-divergence and their differences are only in
the values of α.

4.2.5 α-Mean

By using the α-representation, we define the α-mean. Let us consider two positive
numbers x and y. We rescale them by

x̃ = h(x), ỹ = h(y), (4.31)

where h(x) is a monotonically increasing differentiable function satisfying h(0) = 0.
We may call h(x) the h-representation of x . The α-representation is the case of
h(x) = hα(x).

The quantity called the h-mean of x and y,

mh(x, y) = h−1

{
h(x) + h(y)

2

}
, (4.32)

is obtained by using the h-representations of x and y, taking their arithmetic mean,
and then rescaling it back by using h−1. The α-mean of x and y is

mα(x, y) =
{

1

2

(
x

1−α
2 + y

1−α
2

)} 2
1−α

. (4.33)
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We further require that the h-mean is scale-free, implying that, for c > 0, the h-mean
of cx and cy is c times their h-mean,

mh(cx, cy) = cmh(x, y). (4.34)

The following theorem characterizes the α-mean.

Theorem 4.7 (Hardy et al. 1952) The α-mean using

h(u) = hα(u) =
{

u
1−α

2 , α �= 1,

log u, α = 1,
(4.35)

is the only scale-free means among h-means.

Proof We show the proof given by Amari (2007). Let h be a monotonically increasing
differentiable function such that the h-mean is scale-free,

h(cm) = 1

2
{h(cx) + h(cy)} . (4.36)

By differentiating Eq. (4.36) with respect to x , we derive

ch′(cm)m ′ = 1

2
ch′(cx), (4.37)

where

m ′ = ∂

∂x
m(x, y). (4.38)

By putting c = 1, we have

h′(m)m ′ = 1

2
h′(x). (4.39)

Hence, we derive from (4.37) and (4.39),

h′(cx)

h′(x)
= h′(cm)

h′(m)
. (4.40)

Since m takes an arbitrary value as y varies, we have

h′(cx)

h′(x)
= g(c) (4.41)

for a function g(c) of c. By putting

k(x) = log h′(x), (4.42)
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we have
k(cx) − k(x) = log g(c). (4.43)

Hence, we have
ck ′(cx) = k ′(x). (4.44)

By putting x = 1,

k ′(c) = b

c
(4.45)

for constant b = k ′(1). We finally derive

h(x) =
{

x
1−α

2 , α �= 1,

log x, α = 1,
(4.46)

neglecting a constant of proportionality. In the case of α = 1, we have log x . �

One sees that the family of α-means includes various known means:

α = 1 (geometric mean) : m1(a, b) = √
ab

α = −1 (arithmetic mean) : m−1(a, b) = 1

2
(a + b)

α = 0 : m0(a, b) = 1

4

(√
a + √

b
)2 = 1

2

(
1

2
(a + b) + √

ab

)

α = 3 (harmonic mean) : m3(a, b) = 2
1
a + 1

b

α = ∞ : m∞(a, b) = min {a, b}
α = −∞ : m−∞(a, b) = max {a, b} .

The last two cases show that fuzzy logic is naturally included in the α-mean.
The α-mean is inversely monotone with respect to α,

mα(a, b) ≥ mα′(a, b), α ≤ α′. (4.47)

This is a generalization of the well-known inequalities

a + b

2
≥ √

ab ≥ 2

a−1 + b−1
. (4.48)

As α increases, the α-mean relies more on the smaller element of {a, b}, while, as
α decreases, the larger one is more emphasized. We may say that the α-mean with
smaller α is pessimistic, and with larger α is more optimistic. See Fig. 4.1.
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Fig. 4.1 α-mean of 1 and 4
for various α

0 1-1

1

4

α

mα(1,4)

We can further define the weighted α-mean of a1, . . . , ak with weights w1, . . . , wk

by

mα (a1, . . . , ak;w) = h−1
α

{∑
wi hα (ai )

}
, (4.49)

where w = (w1, . . . , wk) and w1 + · · · + wk = 1. This leads us to the α-family of
probability distributions in the next subsection.

4.2.6 α-Families of Probability Distributions

Given k probability distributions pi (x), i = 1, . . . , k, we can define their α-mixture
by using the α-mean.

The α-representation of probability density function p(x) is given (Amari and
Nagaoka 2000) by

hα [p(x)] =
{

p(x)(1−α)/2, α �= 1,

log p(x), α = 1.
(4.50)

Their α-mixture is defined by

p̃α(x) = ch−1
α

{
1

k

k∑

i=1

hα {pi (x)}
}

, (4.51)

where normalization constant c is necessary to make it a probability distribution. It
is given by

c = 1
∫

h−1
α

{
1
k

∑
hα [pi (x)]

}
dx

. (4.52)

The α = −1 mixture is the ordinary mixture and the α = 1 mixture is the exponential
mixture. The α = −∞ mixture,
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p̃−∞(x) = c max
i

{pi (x)} , (4.53)

is the optimistic integration of component distributions in the sense that, for each x ,
it takes the largest values of the component probabilities. On the contrary, the α = ∞
mixture is pessimistic, taking the minimum of the component probabilities,

p̃∞(x) = c min {pi (x)} . (4.54)

The exponential mixture is more pessimistic than the ordinary mixture in the sense
that the resulting probability density is close to 0 at x where some of the components
are close to 0.

Let us next consider weighted mixtures. The weighted α-mixture with weights
w1, . . . , wk satisfying

∑
wi = 1 is given by

p̃α (x;w) = ch−1
α

{∑
wi hα {pi (x)}

}
. (4.55)

This is called the α-integration of p1(x), . . . , pk(x) with weights w1, . . . , wk . It con-
nects k component distributions p1(x), . . . , pk(x) continuously by using the param-
eter w = (w1, . . . , wk). It is called the α-family of probability distributions where
w plays the role of its coordinate system. When α = −1, this is an ordinary mixture
family,

p̃−1(x;w) =
∑

wi pi (x), (4.56)

where
∑

wi = 1 is imposed. When α = 1, this is an exponential family,

p̃1(x,w) = exp
{∑

wi log pi (x) − ψ(w)
}

, (4.57)

where the normalization constant is given by

c = exp {−ψ} . (4.58)

The probability simplex Sn (and the function space F of probability distributions)
are special, satisfying the following theorem.

Theorem 4.8 The probability simplex Sn is an α-family for any α.

Proof Sn is a mixture of δi (x),

p(x) =
n∑

i=0

piδi (x). (4.59)

The α-mixture family of δi (x) is
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p̃α(x,w) = c
[∑

wiδi (x)
] 2

1−α

, (4.60)

where
wi = p

1−α
2

i , i = 0, 1, . . . , n. (4.61)

They cover the entire Sn so that Sn is an α-family. �
We can also show that an α-geodesic connecting p and q in Sn is a one-dimensional

α-family.

4.2.7 Optimality of α-Integration

When a cluster of k distributions p1(x), . . . , pk(x) is given, we search for q(x) that
is close to all of p1(x), . . . , pk(x). It is regarded as the center of the cluster. Let
w1, . . . , wk be weights assigned to pi (x), i = 1, . . . , k, and we use the weighted
average of divergences from pi (x)’s to q(x),

RD [q(x)] =
∑

wi D [pi (x) : q(x)] (4.62)

as a risk function. We search for the distribution q(x) that minimizes RD[q(x)].
The minimizer of RD is called the D-optimal integration of p1(x), . . . , pk(x) with
weights w1, . . . , wk . The following theorem characterizes the α-integration (Amari
2007).

Theorem 4.9 (Optimality of α-integration) The α-integration of probability distri-
butions p1(x), . . . , pk(x) with weights w1, . . . , wk is optimal under the α-risk,

Rα [q(x)] =
∑

wi Dα [pi (x) : q(x)] , (4.63)

where Dα is the α-divergence.

Proof Let us first prove the case of α �= ±1. By taking the variation of Rα[q(x)]
under the normalizing constraint

∫
q(x)dx = 1, (4.64)

we derive

δRα[q(x)] − λ

∫
δq(x)dx

= 2

1 − α

∑
wi

∫
pi (x)

1−α
2 q(x)−

1+α
2 δq(x)dx − λ

∫
δq(x)dx

= 0, (4.65)
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where λ is the Lagrange multiplier. This gives

q(x)−
1−α

2

∑
wi pi (x)

1−α
2 = const (4.66)

and hence, the optimal q(x) is

q(x) = ch−1
α

[∑
wi hα {pi (x)}

]
. (4.67)

When α = ±1, we obtain

δR1[q(x)] =
∑

wi

∫
log

q(x)

pi (x)
δq(x)dx, (4.68)

δR−1[q(x)] = −
∑

wi

∫ {
pi (x)

q(x)
+ const

}
δq(x)dx, (4.69)

respectively. Hence, the optimal q is proved to be the α-integration for any α. �

The case with unnormalized probabilities, i.e., positive measures, is similar. The
optimal integration m̃α(x) of m1(x), . . . , mk(x) under the α-divergence criterion is

m̃α(x) = h−1
α

[∑
wi hα {mi (x)}

]
, (4.70)

where the normalization constant is not necessary.
There are interesting papers concerning applications of the α-integration of

stochastic evidences, see e.g., Wu (2009), Choi et al. (2013) and Soriano and Vergara
(2015).

4.2.8 Application to α-Integration of Experts

Let us consider a system composed of k experts M1, . . . , Mk , each of which pro-
cesses input signal x and emits its own answer. The answer of Mi is a response
y corresponding to x. More generally, consider the case that the output of Mi is
a probability distribution of y, pi (y|x), or a positive measure, mi (y|x). The entire
system integrates these answers and provides an integrated answer concerning the
distribution of y given x (Fig. 4.2).

Let us assume that wi (x) is given as the weight or reliability of Mi for input x.
The α-risk of an integrated answer q(y|x) is given by

Rα [q(y|x)] =
∑

wi (x)Dα [pi (y|x) : q(y|x)] . (4.71)
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Fig. 4.2 Integration of answers of expert machines

Theorem 4.10 The α-expert machine

q(y|x) = h−1
α

[∑
wi (x)hα {pi (y|x)}

]
(4.72)

is optimal under the α-risk Rα [q(y|x)].

Similar assertions hold for the case of positive measures.
The α = 1 machine is the mixture of experts (Jacobs et al. 1991) and the α = −1

machine is the product of experts (Hinton 2002).
It is important to determine the weights or reliability functions wi (x). When a

teacher output q∗(y|x) is available, one may use the soft-max function

wi (x) = c exp
{−βDα

[
pi (y|x) : q∗(y|x)

]}
(4.73)

as the weight of Mi , where c is the normalization constant and β is the “inverse
temperature”, indicating the effectiveness of the weights.

4.3 Geometry of Tsallis q-Entropy

The Boltzmann–Gibbs distribution in statistical physics is an exponential family, such
that an invariant flat structure is given to the underlying manifold. Its convex function
is free energy and its dual convex function is the negative of the Shannon entropy.
C. Tsallis proposed a generalized entropy called the q-entropy for studying various
phenomena not included in the conventional Boltzmann–Gibbs framework (Tsallis
1988, 2009). The induced probability distributions are not exponential families which
are subject to exponential decay of tail probabilities. This has opened the door to a
new world of physics and beyond. The q-logarithm and q-exponential are introduced
to this end. However, the q-logarithm is essentially the same as the α-representation,
where q and α are connected by α = 2q − 1. Therefore, the α-geometry covers the
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geometry of q-entropy physics (Ohara 2007). We treat the discrete case of Sn mostly,
but the results hold in the continuous case, too.

We further extend the q-framework by using the q-escort distribution. This gives a
new dually flat structure to Sn , although it is not invariant (Amari and Ohara 2011). It
is conformally related to the invariant geometry (Amari et al. 2012). This framework
is extended further to deformed exponential families proposed by Naudts (2011).

4.3.1 q-Logarithm and q-Exponential Function

Tsallis introduced a generalized logarithm, called the q-logarithm, by

logq(u) = 1

1 − q

(
u1−q − 1

)
, (4.74)

which gives log u in the limit q → 1. The inverse of the q logarithm is the
q-exponential,

expq(u) = {1 + (1 − q)u} 1
1−q , (4.75)

which gives the ordinary exponential function in the limit q → 1. These functions are
the same as the α-representation hα(u) and its inverse, where α = 2q −1, except for
a scaling factor and a constant. However, we keep the original q-notation rather than
the α-notation in this section, respecting the original q-terminology by C. Tsallis.

The Tsallis q-entropy is defined by

Hq( p) =
∑

pi logq
1

pi
, (4.76)

by replacing log by logq , which is concave for 0 < q ≤ 1 and is the Shannon entropy
when q = 1. This is closely related to the Rényi entropy (Rényi 1961). Similarly,
the q-divergence is defined by

Dq [ p : r] = E

[
logq

r(x)

p(x)

]
= 1

1 − q

(
1 −

∑
pq

i r1−q
i

)
, (4.77)

where E is the expectation with respect to p. This is the same as the α-divergence
(3.39) with α = 2q − 1.

The geometry derived from the q-divergence satisfies the invariance criterion,
since it belongs to the class of f -divergence. So the Riemannian metric is given by
the Fisher information matrix. Further, it is not dually flat except for the limiting
cases of q = 0 (α = −1) and 1 (α = 1). However, if we extend it to the manifold
of positive measures, it is both invariant and dually flat.

http://dx.doi.org/10.1007/978-4-431-55978-8_3
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4.3.2 q-Exponential Family (α-Family) of Probability
Distributions

We define the q-exponential family by

logq p(x,θ) = θ · x − ψq(θ), (4.78)

or equivalently by
p(x,θ) = expq

{
θ · x − ψq(θ)

}
, (4.79)

where logq and expq are used instead of log and exp in the ordinary exponential family.
This is an α-family (4.60) of Sn , in which hα is used instead of logq , θ = (wi ) and
x = {δi (x)}. Here, ψq(θ) is determined from the normalization constraint

∫
expq

{
θ · x − ψq(θ)

}
dx = 1. (4.80)

Another example is the q-Gaussian distribution, given by

logq(x,θ) = − (x − μ)2

2σ2
= θ · x − ψ(θ), (4.81)

θ =
(

μ

σ2
,− 1

2σ2

)
, x = (

x, x2) , (4.82)

where random variable x takes continuous values. Different from a Gaussian distri-
bution, the values of x are limited within a finite range. Another important q-family
is Sn . We rewrite Theorem 4.8 in the following form.

Theorem 4.11 The family Sn of all the discrete distributions is a q-family for any
q, that is an α-family for any α.

Proof By introducing random variables δi (x) and putting x = (δ1(x), . . . , δn(x)), a
probability p ∈ Sn is written, using parameter θ, in the form

logq p(x,θ) = 1

1 − q

{
n∑

i=1

(
p1−q

i − p1−q
0

)
δi (x) + p1−q

0 − 1

}

, (4.83)

where the coordinate system θ is

θi = 1

1 − q

(
p1−q

i − p1−q
0

)
, xi = δi (x). (4.84)
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Hence, it is a q-family (α-family). The function corresponding to the free energy is

ψq(θ) = − logq p0, (4.85)

where p0 is a function of θ. We call it the q-free energy. �

4.3.3 q-Escort Geometry

The q-geometry (α-geometry) is induced in a q-exponential family from the q-
divergence. It consists of the Fisher information metric (3.68) and cubic tensor defined
in (3.88). It is invariant but not flat in general. This is because the q-divergence (α-
divergence) is not a Bregman divergence in general. However, it is possible to modify
it conformally to obtain a new dually flat structure. To begin with, we show that the
q-free energy ψq(θ) defined by (4.80) is a convex function of θ.

Lemma 4.1 The q-free energy is convex.

Proof By differentiating (4.79) with respect to θ, we have

∂i p(x,θ) = p(x,θ)q
(
xi − ∂iψq

)
. (4.86)

Its second derivatives are

∂i∂ j p(x,θ) = qp(x,θ)2q−1
(
xi − ∂iψq

) (
x j − ∂ jψq

) − p(x,θ)q∂i∂ jψq . (4.87)

We introduce a functional

hq [p(x)] =
∫

p(x)qdx, (4.88)

which is the Tsallis q-entropy except for a scale and constant. Then, from (4.86) and
(4.87) and by using the identities

∂i

∫
p(x,θ)dx = ∂i∂ j

∫
p(x,θ)dx = 0, (4.89)

we have

∂iψq(θ) = 1

hq(θ)

∫
xi p(x,θ)qdx, (4.90)

∂i∂ jψq(θ) = q

hq(θ)

∫ (
xi − ∂iψq

) (
x j − ∂ jψq

)
p(x,θ)2q−1dx, (4.91)

http://dx.doi.org/10.1007/978-4-431-55978-8_3
http://dx.doi.org/10.1007/978-4-431-55978-8_3
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the latter of which shows that the Hessian of ψq is positive-definite. This is called
the q-metric

g
q
i j = ∂i∂ jψq(θ), (4.92)

which is different from the invariant Fisher metric.
A new dually flat structure is introduced in Sn by the q-free-energy, which is

different from the free energy. The affine coordinates are θi given by (4.84). The
dual affine coordinate system η is given by

ηi = ∂iψq(θ) = pq
i

hq( p)
. (4.93)

The dual convex function is the inverse of the q-entropy

ϕq(η) = 1

1 − q

{
1

hq( p)
− 1

}
, (4.94)

except for a scale and constant.
The Bregman divergence derived by ψq is

D̃q [p(x) : r(x)] = 1

(1 − q)hq [r(x)]
(

1 −
∫

p(x)1−qr(x)qdx
)

, (4.95)

which is different from the q-divergence Dq . D̃q gives another dually flat Riemannian
structure to Sn .

By putting

p̃i = ηi , i = 1, . . . , n, (4.96)

p̃0 = pq
0

hq( p)
, (4.97)

n∑

i=0

p̃i = 1 (4.98)

holds. So η gives another probability distribution p̃ of Sn . We call it the escort
probability distribution of p. The escort distribution is obtained by changing pi to
pq

i /hq which shifts p toward the center (the uniform distribution p0) as q decreases
from q = 1.

We can define the q-escort geodesic and dual q-escort geodesic in Sn . By using
these geodesics, the q-Pythagorean theorem holds with respect to the q-escort diver-
gence. One of the important consequences is the q-max entropy theorem. To this
end, we define the q-escort expectation by

Ẽq [a(x)] =
∫

a(x)p(x)q

hq
dx . (4.99)
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Theorem 4.12 ( q-Max-Entropy Theorem) Let Mk(a) be a submanifold of Sn con-
sisting of probability distributions of which the q-escort expectations of random
variables c1(x), . . . , ck(x) take fixed values,

Ẽq [ci (x)] = ai , i = 1, . . . , k. (4.100)

where a = (a1, . . . , ak). The probability distribution p̂(a) in Mk(a) that maximizes
the q-entropy is given by the q-geodesic projection of the uniform distribution p0 to
Mk(a). The family of such distributions for various a = θ is a q-exponential family
of distributions,

logq p(x,θ) = θi ci (x) − ψ(θ). (4.101)

Proof This is clear from the fact that Mk is flat in the dual sense and (4.101) is a flat
submanifold in the primal sense. See Fig. 4.3. �

4.3.4 Deformed Exponential Family: χ-Escort Geometry

We used the q-logarithm to define the q-structure in Sn . However, we may use
a more general representation to study various dually flat structures of Sn . See, for
example, a deformed exponential family called the κ-exponential family (Kaniadakis
and Scarfone 2002). Following Naudts (2011), we introduce the χ-logarithm defined
by

logχ(s) =
∫ s

1

1

χ(t)
dt, (4.102)

where χ is a positive non-decreasing function. We simply put

u(s) = logχ(s). (4.103)
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When χ is a power function

χ(s) = sq , q > 0, (4.104)

it gives the q-logarithm. We use the inverse of u as the v-representation,

v(s) = expχ(s) = u−1(s). (4.105)

The χ-deformed exponential family is defined by using (4.105) as

p(x,θ) = expχ

{
θ · x − ψχ(θ)

}
, (4.106)

where ψχ is the free-energy corresponding to the normalization factor.

Theorem 4.13 Sn is a χ-exponential family for any χ function.

Proof We can prove the theorem in the same way as Theorem 4.11, by replacing
logq by logχ. The affine coordinates are

θi = u (pi ) − ψχ, i = 1, . . . , n (4.107)

and the χ-free-energy is
ψχ(θ) = −u (p0) . (4.108)

The χ-free-energy is a convex function of θ, so we can introduce a new dually
flat affine structure together with a Riemannian metric. The Riemannian metric is
written anew as

∂i∂ jψχ(θ) =
∫

u′′(θ · x − ψ) (xi − ∂iψ)
(
x j − ∂ jψ

)
dx

hχ(θ)
, (4.109)

where hχ(θ) is the χ-escort entropy defined by

hχ(θ) =
∫

χ {p(x,θ)} dx =
∑

u′ (θi − ψχ

) + u′ (−ψχ

)
. (4.110)

The dual affine coordinates are given by

ηi =
∫

u′(θ · x − ψ)xi dx

hχ(θ)
= 1

hχ( p)

1

v′ (pi )
, (4.111)

where

u′ {v(p)} = 1

v′(p)
(4.112)
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is used. The dual η in (4.111) defines a probability distribution p̃ called the χ-escort
distribution. The dual convex function is

ϕχ(η) = 1

hχ

n∑

i=0

v (pi )

v′ (pi )
. (4.113)

The χ-divergence is

Dχ

[
p : q

] = ψχ

(
θ p

) + ϕχ

(
ηq

) − θ p · ηq

= 1

hχ( p)

n∑

i=0

u (pi ) − u (qi )

v′ (pi )
. (4.114)

The generalized Pythagorean theorem holds as well. �
Remark The expχ(u) is a convex function. Vigelis and Cavalcante (2013) introduced
a ϕ-family of probability distributions by using a convex function ϕ(u). A new
representation f (x) of a probability density function p(x) is given by

f (x) = ϕ {p(x)} . (4.115)

This is closely related to the χ-representation. A ϕ-family of probability distributions
and ϕ-divergence are defined in this framework, giving a dually flat structure. It is
possible to extend to the non-parametric case.

4.3.5 Conformal Character of q-Escort Geometry

The q-divergence is an invariant divergence, leading to the Fisher information metric.
The q-escort divergence (4.95) is not invariant and the derived metric is not the Fisher
information metric. However, we see that the q-metric is connected to the Fisher
metric gi j (θ) by

g̃i j (θ) = σ(θ)gi j (θ), σ(θ) > 0, (4.116)

where

σ( p) = 1

hq( p)
. (4.117)

This implies that the metric is changed pointwise isotropically, implying that the
magnitude of a vector is enlarged or shrunken by a factor σ( p) but the angle of two
vectors never changes, keeping the orthogonality invariant. Such a transformation of
metric is called a conformal transformation. Hence, the q-escort structure is given
by a conformal transformation from the invariant geometry. However, this property
does not hold in the general χ-structure. We show the following theorem without
proof. See Amari et al. (2012) and Ohara et al. (2012).
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Theorem 4.14 The q-escort geometry is unique among the χ-escort geometries in
the sense that its Riemannian metric is derived by a conformal transformation of the
invariant Fisher metric.

Remark Conformal transformations are used in asymptotic theory of statistical infer-
ence (Okamoto et al. 1991; Kumon et al. 2011). They are also used in improving a
kernel function in support vector machines, which will be shown later in Chap. 11.

4.4 (u, v)-Divergence: Dually Flat Divergence in Manifold
of Positive Measures

We have used p and log p representations of probability, which play the role of
two dual coordinate systems in the invariant geometry. We have further used the α-
or q-representations, which lead us to the α-geometry. The generalized deformed
exponential family uses the χ-representation. A representation of probability defines
the geometry. The importance of representation was emphasized by Zhang (2004).
Eguchi et al. (2014) uses a U -representation to define the U structure which is dually
flat.

The present section considers Rn
+ and introduces a dually flat structure by using a

pair of representations. We extend the idea given by Zhang (2011, 2013) and establish
a general dually flat structure in Rn

+. The present section mostly follows Amari (2014)
to define general decomposable and non-decomposable Bregman divergences in a
manifold of positive measures. In the next section, they are extended to invariant
Bregman divergences of a manifold of positive-definite matrices.

4.4.1 Decomposable (u, v)-Divergence

Let us use two monotonically increasing and differentiable functions u(m) and v(m)

and define
θ = u(m), η = v(m). (4.118)

They are called the u- and v-representations of positive measure m, respectively.
Given m ∈ Rn

+, we call θ = (
θi

)
and η = (ηi ) defined by

θi = u (mi ) , ηi = v (mi ) , (4.119)

the u- and v-representations of m, respectively. The θ and η are coordinate systems
in R+

n . We search for a dually flat structure such that the u- and v-representations of
m become two affine coordinates. To this end, we define a pair of convex functions
ψu,v(θ) and ϕu,v(η) from which a Bregman divergence Du,v

[
m : m′] is derived.

We define two scalar functions of θ and η by

http://dx.doi.org/10.1007/978-4-431-55978-8_11
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ψ̃u,v(θ) =
∫ u−1(θ)

0
v(m)u′(m)dm, (4.120)

ϕ̃u,v(η) =
∫ v−1(η)

0
u(m)v′(m)dm. (4.121)

By differentiation, we have

ψ̃′
u,v(θ) = v(m), (4.122)

ψ̃′′
u,v(θ) = v′(m)

u′(m)
. (4.123)

Since u′(m) > 0, v′(m) > 0, ψ̃′′
u,v > 0. Hence, ψ̃u,v(θ) is a convex function. So is

ϕ̃u,v(η). Moreover, they are the Legendre duals, because

ψ̃u,v(θ) + ϕ̃u,v(η) − θη =
∫ m

0
v(m)u′(m)dm

+
∫ m

0
u(m)v′(m)dm − u(m)v(m) = 0. (4.124)

We now define decomposable convex functions of θ and η by

ψu,v(θ) =
∑

ψ̃u,v

(
θi

)
, (4.125)

ϕu,v(η) =
∑

ϕ̃u,v (ηi ) . (4.126)

Definition 4.1 The (u, v)-divergence between two points m, m′ ∈ R+
n is defined

by

Du,v

[
m : m′] = ψu,v (θ) + ϕu,v

(
η′) − θ · η′

=
∑[∫ mi

0
v(m)u′(m)dm

+
∫ m ′

i

0
u(m)v′(m)dm − u (mi ) v

(
m ′

i

)]
, (4.127)

where θ and η′ are u- and v-representations of m and m′, respectively.

The (u, v)-divergence gives a dually flat structure, where θ and η are affine and
dual affine coordinate systems. The transformation between θ and η is simple in the
(u, v)-structure, because it can be done componentwise,

θi = u
{
v−1 (ηi )

}
, (4.128)

ηi = v
{
u−1

(
θi

)}
. (4.129)
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This is a merit of the (u, v)-divergence. The Riemannian metric is given by

gi j (m) = v′ (mi )

u′ (mi )
δi j . (4.130)

It is easy to see that this is a Euclidean metric. We have a new coordinate system
r(m)

r (mi ) =
∫ mi

√
v′(m)

u′(m)
dm, (4.131)

in which the Riemannian metric is gi j = δi j . The following theorem follows imme-
diately.

Theorem 4.15 A decomposable and dually flat divergence in Rn
+ is a (u, v)-

divergence when it is invariant under the permutation of indices.

Many divergences are written in the form of (u, v)-divergence.

1. (α,β)-divergence

From the following power functions,

u(m) = 1

α
mα, v(m) = 1

β
mβ, (4.132)

Dα,β[ p : q] = 1

αβ (α + β)

∑ {
αpα+β

i + βqα+β
i − (α + β)pα

i qβ
i

}
(4.133)

is derived. This was introduced by Cichocki and Amari (2010) and Cichocki et al.
(2011). The affine and dual affine coordinates are

θi = 1

α
(mi )

α , ηi = 1

β
(mi )

β (4.134)

and the convex functions are

ψ(θ) = cα,β

∑
θ

α+β
α

i , ϕ(η) = cβ,α

∑
η

α+β
β

i , (4.135)

where

cα,β = 1

β(α + β)
α

α+β
α . (4.136)

2. α-divergence

By putting

u(m) = 2

1 − α
m

1−α
2 , v(m) = 2

1 + α
m

1+α
2 , (4.137)
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we have

Dα

[
m : m′] = 4

1 − α2

∑ {
1 − α

2
mi + 1 + α

2
m

1−α
2

i − mα
i

(
m ′

i

) 1+α
2

}
. (4.138)

This is a special case of the (α,β)-divergence.

3. β-divergence

From

u(m) = m, v(m) = 1

β
m1+β, (4.139)

we have

Dβ

[
m : m′] = 1

β(β + 1)

∑

i

[
mβ+1

i + (β + 1)m ′
i − (

m ′
i

)β+1 − (β + 1)mi
(
m ′

i

)β
]
.

(4.140)

This is the β-divergence (Minami and Eguchi 2004). It gives a dually flat structure
even in Sn . This is because u(m) is linear in m.

4. U-divergence

From
u(m) = m, v(m) = U ′(m), (4.141)

where U (m) is a convex function, we have the U -divergence (Eguchi et al. 2014).

4.4.2 General (u, v) Flat Structure in Rn+

We consider a general dually flat structure of Rn
+ which is not necessarily decom-

posable. Let us introduce a new coordinate system

θ = u(m) (4.142)

in Rn
+, where u is an arbitrary differentiable bijective vector function. We can define

a dually flat structure in Rn
+ by using an arbitrary convex function ψ(θ). θ is the

associated affine coordinate system and the dual affine coordinates are

η = ∇ψ(θ). (4.143)

We put
v(m) = ∇ψ(θ). (4.144)
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This structure is used in Nock et al. (2015).
An arbitrary pair (u, v) of coordinate systems do not necessarily give a dually flat

structure. They give dually flat structure when and only when there exists a convex
function ψ(θ) such that

η = v
{

u−1(θ)
}

(4.145)

is its gradient. In the case of a decomposable pair (u, v), the condition is always
satisfied and the pair always defines a dually flat structure.

The Riemannian metric induced from a (u, v)-structure is G(θ) = ∇∇ψ(θ),
which is not Euclidean in general.

4.5 Invariant Flat Divergence in Manifold
of Positive-Definite Matrices

The present section studies information geometry of the manifold of positive-definite
matrices, following Amari (2014). See also Ohara and Eguchi (2013). An extensive
review is found in Cichocki et al. (2015). A positive definite matrix A is decom-
posed as

A = OT �O, (4.146)

where � is a diagonal matrix consisting of positive entries (eigenvalues of A) and
O is an orthogonal matrix. A positive-definite diagonal matrix is compared with a
positive measure distribution. When its trace is 1, it is compared with a probability
distribution. So a positive-definite matrix is an extension of a positive measure.
Therefore, one can introduce a dually flat structure to the manifold of positive-
definite matrices with the help of the (u, v)-structure. The manifold of positive-
definite Hermitian matrices, in particular those with a trace equal to 1, are important
in quantum information theory, but we do not study them, treating only the real case.

4.5.1 Bregman Divergence and Invariance Under Gl(n)

Let P be a positive-definite symmetric matrix and ψ(P) be a convex function. A Breg-
man divergence is defined between two positive-definite matrices P and Q by

D[P : Q] = ψ(P) − ψ(Q) − ∇ψ(Q) · (P − Q), (4.147)

where ∇ is the gradient operator with respect to matrix P = (
Pi j

)
and hence ∇ψ is

a matrix, and the inner product of two matrices is defined by

Q · P = tr {QP} . (4.148)
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It induces a dually flat structure in the manifold of positive-definite matrices, where
the affine coordinate system is P itself and the dual affine coordinate system is

P∗ = ∇ψ(P). (4.149)

There is a one-to-one correspondence between positive-definite matrices and zero-
mean multivariate Gaussian distributions. Indeed, a zero-mean multivariate Gaussian
distribution is given by using a positive-definite matrix P as

p(x, P) = exp

{
1

2
xT P−1x − log

√
(2π)n det |P|

}
, (4.150)

which is an exponential family. Its e-affine coordinates are P−1. The flat geometry
is, therefore, given by the KL-divergence,

D[P : Q] = tr
(
PQ−1

) − log
(
det

∣
∣PQ−1

∣
∣) − n, (4.151)

which is obtained from the potential function

ψ(P−1) = − log(det |P−1|). (4.152)

Let us consider a linear transformation of P by L ∈ Gl(n), which is the set of all
non-degenerate n × n matrices, given by

P̃ = LT PL. (4.153)

This corresponds to the transformation of random variable x to

x̃ = Lx. (4.154)

A divergence is said to be invariant under Gl(n) when it satisfies

D [P : Q] = D
[
LT PL : LT QL

]
. (4.155)

Since the KL-divergence is invariant under any transformation of x, it is invariant
under Gl(n).

Theorem 4.16 The KL-divergence is a flat divergence which is invariant under
Gl(n) in the manifold of positive-definite matrices.
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4.5.2 Invariant Flat Decomposable Divergences Under O(n)

The eigenvalues of a positive-definite matrix do not change under an orthogonal
transformation O ∈ O(n), the group of orthogonal matrices. It is natural to consider
a dually flat structure which is invariant under O(n).

4.5.2.1 The Case When P is e-Affine

We have a convex function ψ(P) of P in this case. It is invariant under O(n) when

ψ(P) = ψ
(
OT PO

)
. (4.156)

An invariant function is a symmetric function of n eigenvalues λ1, . . . ,λn of P
(Dhillon and Tropp 2007). An invariant convex function of P is written using a
convex function f of one variable satisfying f (0) = 0 as

ψ f (P) =
∑

f (λi ) = tr f (P), (4.157)

when it is decomposable in the additive form of λi . We study this case. We can prove
the following lemma.

Lemma
P∗ = ∇ψ f (P) = f ′(P). (4.158)

Outline of the proof. We assume that f is an analytic function. Then, f (P) is expanded
in a power series of P. Therefore, we prove the lemma in the case of f (P) = Pn ,
which is easy. Hence, we have the lemma. �

Let g(u) be a function such that g′(u) is the inverse function of f ′(u), satisfying
g(0) = 0. Then, the inverse transformation from P′ to P is given by

P = g′ (P′) . (4.159)

Hence, the dual potential function is

ϕ f
(
P∗) = tr

{
g

(
P∗)} . (4.160)

Theorem 4.17 An e-flat decomposable O(n)-invariant divergence is given by

D f [P : Q] = ψ f (P) + ϕ f
{

f ′(Q)
} − tr

{
Pf ′(Q)

}
, (4.161)

where ϕ f is the Legendre dual of ψ f .

We give well-known examples of invariant symmetric convex functions and dually
flat divergences.
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(1) For f (λ) = (1/2)λ2, we have

ψ(P) = 1

2

∑
λ2

i , (4.162)

D[P : Q] = 1

2
‖P − Q‖2, (4.163)

where ‖P‖2 is the Frobenius norm

‖P‖2 =
∑

P2
i j . (4.164)

This gives a Euclidean structure.
(2) For f (λ) = − log λ, we have (4.152) and (4.151), which are invariant under
Gl(n).
(3) For f (λ) = λ log λ − λ,

ψ(P) = tr (P log P − P) , (4.165)

D[P : Q] = tr (P log P − P log Q − P + Q) . (4.166)

This divergence is used in quantum information theory. The affine coordinate system
is P, the dual affine coordinate system is log P and ψ(P) is related to the von Neumann
entropy.

4.5.2.2 General Dually Flat Decomposable Case: (u, v)-Divergence

We use the (u, v)-structure to introduce a general dually flat invariant decomposable
divergence. Let

Θ = u(P), H = v(P) (4.167)

be u- and v-representations of matrices. We use two functions ψ̃u,v(θ) and ϕ̃u,v(η)

defined by (4.120) and (4.121) for defining a pair of dually coupled invariant convex
functions,

ψ(�) = tr ψ̃u,v {�} , (4.168)

ϕ(H) = tr ϕ̃u,v {H} . (4.169)

They are not convex with respect to P, but convex with respect to � and H, respec-
tively. The derived Bregman divergence is

Du,v[P : Q] = ψ {Θ(P)} + ϕ {H(Q)} − �(P) · H(Q). (4.170)

It induces a dually flat structure to the manifold of positive-definite matrices.
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Theorem 4.18 A dually flat, invariant and decomposable divergence is a (u, v)-
divergence in the manifold of positive-definite matrices.

The Euclidean, Gaussian and von Neumann divergences given in (4.163), (4.151)
and (4.166) are special examples of (u, v)-divergences. They are given by

(1) u(m) = v(m) = m, (4.171)

(2) u(m) = m, v(m) = − 1

m
, (4.172)

(3) u(m) = m, v(m) = log m. (4.173)

When u and v are power functions, we have the (α,β)-structure in the manifold of
positive-definite matrices.

(4) (α-β)-divergence
By using the (α,β)-structure given by (4.132), we have

ψ(�) = α

α + β
tr �

α+β
α = α

α + β
tr Pα+β, (4.174)

ϕ(H) = β

α + β
tr H

α+β
β = β

α + β
tr Pα+β (4.175)

and the (α,β)-divergence of matrices,

Dαβ[P : Q] = tr

{
α

α + β
Pα+β + β

α + β
Qα+β − PαQβ

}
. (4.176)

This is a Bregman divergence, where the affine coordinate system is � = Pα and its
dual is H = Pβ .

(5) The α-divergence is derived as

�(P) = 2

1 − α
P

1−α
2 , (4.177)

ψ(�) = 2

1 + α
P, (4.178)

Dα[P : Q] = 4

1 − α2
tr

(
−P

1−α
2 Q

1+α
2 + 1 − α

2
P + 1 + α

2
Q

)
(4.179)

The affine coordinate system is 2
1−α

P
1−α

2 and its dual is 2
1+α

P
1+α

2 .
(6) The β-divergence is derived from (4.139) as

Dβ[P : Q] = 1

β(β + 1)
tr

[
Pβ+1 + (β + 1)Q − Qβ+1 − (β + 1)PQβ

]
. (4.180)
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4.5.3 Non-flat Invariant Divergences

We have so far studied invariant flat divergences. There are other types of invariant
divergences which are not necessarily flat. We remark that the eigenvalues of P Q−1

are invariant under Gl(n), because, for P̃ = LT PL and W̃ = LT QL,

P̃Q̃
−1 = LT

(
PQ−1) (

LT
)−1

(4.181)

holds. So a divergence D[P : Q] is invariant when it is written as a function of
� = diag (λ1, . . . ,λn), where λi are the eigenvalues of PQ−1.

Cichocki et al. (2015) introduced the following (α-β)-log-det divergence:

Dlog - det
α,β [P : Q] = 1

αβ
log det

α
(
PQ−1

)β + β
(
PQ−1

)α

α + β
, (4.182)

which can be written in terms of � as

Dlog - det
α,β [P : Q] = 1

αβ
log det

α�β + β�α

α + β

= 1

αβ

∑
log

αλ
β
i + βλ−α

i

α + β
. (4.183)

It is extended to the case of α = 0 and/or β = 0 by taking the limit α,β → 0. For
example,

Dlog - det
α,0 [P : Q] = 1

α2

[∑ {
(λi )

−α + α log λi
} − n

]
, (4.184)

Dlog - det
0,0 [P : Q] = 1

2

∑
(log λi )

2 . (4.185)

When α = β, Dlog - det
α,β [P : Q] is symmetric with respect to P and Q and hence the

geometry is self-dual and Riemannian.
It is interesting to see that Dlog - det

α,β [P : Q] generates the same Riemannian metric
not depending on α and β, although the dual affine connections do depend on α and β.

Theorem 4.19 The Riemannian metric induced from the (α,β)-log-det diver-
gence is

〈dP, dP〉P = 1

2
tr

(
dPP−1dPP−1

)
. (4.186)

We omit the proof.
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4.6 Miscellaneous Divergences

Many divergences have been defined in the literature. We show some of them. They
are not invariant and not flat in general, but have their own characteristics. An exten-
sive survey on divergence is found in Basseville (2013). See also Cichocki et al.
(2009, 2011), for example. Only a Bregman divergence generates a dually flat struc-
ture. However, any divergence generates a dual pair of affine connections together
with a Riemannian metric, as will be shown in Part II.

4.6.1 γ-Divergence

The γ-divergence was proposed by Fujisawa and Eguchi (2008). See also Cichocki
and Amari (2010). Let γ be a real parameter. The γ-divergence between two proba-
bility distributions p and q is defined by

Dγ[ p : q] = 1

γ(γ − 1)
log

∑
pγ

i

(∑
qγ

i

)γ−1

(∑
pi q

γ−1
i

)γ . (4.187)

It is projectively invariant in the sense that, for any positive constants c1 and c2,

Dγ

[
c1 p : c2q

] = Dγ[ p : q] (4.188)

holds.
The γ-divergence has a super-robust property when we use it in statistical esti-

mation. It is extremely robust even when outliers are mixed in observed data. It is
possible to define the γ-divergence between positive-definite matrices P and Q as

Dγ[P : Q] = 1

γ(γ − 1)
log

trPγ {(trQ)γ}γ−1

{
trPQγ−1

}γ . (4.189)

4.6.2 Other Types of (α,β)-Divergences

Zhang (2004) introduced the following (α,β)-divergence,

Dα,β
Zhang[ p : q] = 4

1 − α2

2

1 + β

∑{
1 − α

2
pi + 1 + α

2
qi

−
(

1 − α

2
p

1−β
2 + 1 + α

2
q

1−β
2

i

) 2
1−β

}
, (4.190)
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which is different from that in the previous subsection. The geometry induced from
(4.190) is exactly the same as the α-geometry.

Zhang (2011) presented another α-divergence when a convex function ψ( p)

exists. It is given by

Dα
ϕ [p(x) : q(x)] = 4

1 − α2

∫ [
1 − α

2
ϕ(p) + 1 − α

2
ϕ(q)

−ϕ

{
1 − α

2
p + 1 + α

2
q

}]
dx . (4.191)

Furuichi (2010) also introduced another (α-β)-divergence,

Dα,β
Furuichi [ p : q] = 1

α − β

∑ (
pα

i q1−α
i − pβ

i q1−β
i

)
. (4.192)

4.6.3 Burbea–Rao Divergence and Jensen–Shannon
Divergence

For a convex function F( p), one can construct a symmetric divergence by

DF [ p : q] = 1

2
{F( p) + F(q)} − F

(
p + q

2

)
. (4.193)

This is called the Burbea–Rao divergence (Burbea and Rao 1982). When we use the
negative of entropy as a convex function, we have

DJ S[ p : q] = H

(
p + q

2

)
− 1

2
{H( p) + H(q)} . (4.194)

This is called the Jensen–Shannon divergence. It can be rewritten using the KL-
divergence as

DJ S[ p : q] = 1

2

{
DK L

[
p : p + q

2

]
+ DK L

[
q : p + q

2

]}
. (4.195)

These are not flat in general.
We have the α-version of the Burbea–Rao divergence

Dα
F [ p : q] = αF( p) + (1 − α)F(q) − F {α p + (1 − α)q} . (4.196)

This is asymmetric divergence.
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4.6.4 (ρ, τ )-Structure and (F, G, H)-Structure

Zhang (2004) considered two representations of probabilities pi in Sn by generalizing
±α-representations. Let ρ be a positive increasing function, and call

ρi = ρ (pi ) (4.197)

the ρ-representation of probability pi . In the continuous case, ρ(x) = ρ {p(x)} is
the ρ-representation. For a differentiable convex function f (ρ), we define a positive
increasing function

τ (p) = f ′ {ρ(p)} , (4.198)

which is another representation, τ -representation, of probability,

τi = τ (pi ) . (4.199)

This was proposed earlier and is the same as the (u, v)-structure of Sect. 4.4.1 defined
in Rn

+.
Harsha and Moosath (2014) introduced a non-invariant dual structure called the

(F, G, H)-structure to a manifold of probability distributions. However, it is proved
to be equivalent to the (ρ, τ )-structure, Zhang (2015). Let G(u) be a smooth positive
function. The G-metric is defined by

gG
i j (ξ) =

∫
∂i l(x, ξ)∂ j l(x, ξ)p(x, ξ)G {p(x, ξ)} dx, (4.200)

which reduces to the invariant Fisher metric when G(u) = 1. Let F and H be two
differentiable monotonically increasing positive functions. We call F {p(x, ξ)} and
H {p(x, ξ)} the F- and H -representations of probability, respectively.

We define the (F, G)-connection by

∇F,G
∂i

∂ j = 〈∂i∂ j F, ∂k F〉G gkm∂m, (4.201)

where 〈·, ·〉G denotes the inner product by using the G-metric. It is represented in
the component form as

Γ
F,G

i jk =
∫ [

∂ j∂ j l +
{

1 + F ′′(p)

F ′(p)

}
∂i l∂ j l

]
∂klG(p)pdx . (4.202)

Similarly, we define the (H, G)-connection.

Theorem 4.20 The (F, G)-connection and (H, G)-connection are dual with respect
to the G-metric when the following relation holds:

F ′(u)H ′(u) = G(u)

u
. (4.203)
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The proof is omitted.
The α-(ρ, τ ) divergence is defined by

Dα
ρ,τ [ p : q] = 1

1 − α2

∑[
1 − α

2
f {ρ (pi )} + 1 + α

2
f {ρ (qi )}

− f

{
1 − α

2
ρ (pi ) + 1 + α

2
ρ (qi )

}]
. (4.204)

This is neither a Bregman divergence nor an invariant divergence in general, but
covers a wide range of divergences in Sn .

Remarks

We have seen that a dually flat structure is derived from a Bregman divergence. There
are many divergences of the Bregman type which lead to different dually flat Rieman-
nian structures. The invariance is a criterion which specifies a reasonable divergence
in a manifold of probability distributions. We have searched for the divergence that
is invariant and, at the same time, dually flat in the manifold Sn of probability dis-
tributions. The KL-divergence is the unique divergence of the Bregman type that is
invariant.

If we consider the extended manifold of Rn
+, the α-divergences are derived as

a unique class of invariant divergences of the Bregman type. This introduces the
α-geometry to the manifold of probability distributions. It is invariant geometry
but is not necessarily dually flat except for the case of α = ±1, which gives the
KL-divergence. The α-geometry is interesting. We have shown the α-Pythagorean
theorem and α-projection theorem in an α-family despite the fact that the manifold
is not dually flat. More generally, given a general divergence and a point P in a
submanifold S ⊂ M , the set of point Q that minimizes D[Q : M] at P ∈ M does
not form a geodesic submanifold orthogonal to M at P . That is, the minimizer P is
not the geodesic projection of Q to M . However, in the case of an α-family, this is
given by the α-geodesic projection for the α-divergence. The α-projection is useful
in applications. See, e.g., Matsuyama (2003).

It is a happy coincidence that the Tsallis q-geometry of the q-entropy is exactly the
same as the geometry where α = 2q−1. Furthermore, the q-geometry introduced the
escort probability distributions, which lead us to the conformal flattening of the non-
flat q-geometry. This gives a new q-divergence of the Bregman type, from which flat
(but non-invariant) geometry is derived. This idea has been generalized to a general
deformed exponential family.

Apart from the framework of invariance, we introduced a general class of decom-
posable and non-decomposable divergences of the Bregman type in Rn

+. They are
the (u, v)- and (u, v)-divergence. This is extended to give an invariant dually flat
geometry to the manifold of positive-definite matrices. Quantum information geom-
etry deals with a manifold of positive-definite Hermite matrices (which is a complex
version of positive-definite real matrices). Therefore, the invariant (u, v)-structure
would be useful in studying quantum information geometry, although we cannot
explore it in the present monograph.
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Divergences are used in various applications. The choice of a divergence function
depends on the purpose of the application. An invariant divergence gives a Fisher effi-
cient estimator but is not robust. There are robust divergences like the γ-divergence.
A decomposable divergence is used in many applications, because they are simple
and the coordinate transformation between θ and η is tractable.



Part II
Introduction to Dual Differential

Geometry



Chapter 5
Elements of Differential Geometry

Here is an introduction to Riemannian geometry. The reader does not need to under-
stand the detailed derivations of equations. More important are ideas and concepts
of differential geometry. They can be understood “intuitively” without tears.

5.1 Manifold and Tangent Space

Let us consider an n-dimensional manifold M having a (local) coordinate system
ξ = (

ξ1, . . . , ξn
)
. It is in general curved. The tangent space Tξ at point ξ is a vector

space spanned by n tangent vectors along the coordinate curves of ξi. We denote them
as {e1, . . . , en}, which is a basis of the tangent space (Fig. 5.1). Tangent space Tξ is
regarded as a linearization of M in a neighborhood of ξ, since a small line element
dξ of M connecting two nearby points P = ξ and P′ = (ξ + dξ) is approximated by
an (infinitesimally small) tangent vector

−→
PP′ = dξ = dξiei. (5.1)

See Fig. 5.2.
Mathematicians are not satisfied with this intuitive definition. They ask what the

tangent vector along the coordinate curve ξi is. They define a tangent vector in terms
of a differential operator on a function f (ξ) in that direction. That is, they identify
tangent vector ei with the well-established partial derivative operator

ei ≈ ∂i = ∂

∂ξi
. (5.2)

It operates on a differentiable function f (ξ) and gives its derivative in the direction
of coordinate curve ξi, that is, the partial derivative. Hence, one may write

eif = ∂if (ξ). (5.3)
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Fig. 5.1 Tangent space Tξ

and basis vectors ei
e j

e i

ξ i

ξ j

Tξ

.

M

Fig. 5.2 Infinitesimal vector
dξ in Tξ

.

M

i

j

d

+d

T

A vector
A = Aiei = Ai∂i (5.4)

is the directional derivative operator which operates on f as

Af = Ai∂if (ξ). (5.5)

When the coordinate system is changed from ξ = (
ξi

)
to ζ = (ζκ), the partial

derivatives change as follows:

∂i = Jκ
i ∂κ, ∂κ = Ji

κ∂i, (5.6)

where

Jκ
i = ∂ζκ

∂ξi
, Ji

κ = ∂ξi

∂ζκ
. (5.7)
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Therefore, we have the law of transformation for the tangent vectors,

eκ = Ji
κei, ei = Jκ

i eκ ; (5.8)

∂κ = Ji
κ∂i, ∂i = Jκ

i ∂κ. (5.9)

For a manifold of probability distributions, we have another expression of a tangent
vector. We identify ei with the score function

ei ≈ ∂i log p(x, ξ), (5.10)

which is a random variable because it is a function of x. Then, the tangent space Tξ

is a linear space spanned by n random variables ∂i log p(x, ξ), i = 1, . . . , n.
A tangent vector is a geometrical quantity, but it has various representations such

as a differentiation operator and a random variable.

5.2 Riemannian Metric

When an inner product is defined in the tangent space Tξ, we have a matrix G = (
gij

)
consisting of the inner products of basis vectors

gij(ξ) = 〈ei, ej〉. (5.11)

It is a positive-definite matrix depending on ξ. It is called the metric tensor and its
components change to

gκλ = Ji
κJj

λgij (5.12)

by a coordinate transformation. (See Sect. 5.4 for the definition of a tensor.) A man-
ifold is Riemannian when a metric tensor is defined.

For the manifold of probability distributions, we define an inner product by using
the stochastic expression

〈ei, ej〉 = E
[
∂i log p(x, ξ)∂j log p(x, ξ)

]
. (5.13)

This is the Fisher information matrix which is invariant.
The inner product of two vectors A = Aiei and B = Bjej is given by

〈A, B〉 = 〈Aiei, Bjej〉 = Aijgij. (5.14)

A Riemannian manifold is Euclidean when there exists a coordinate system in which
the metric tensor becomes

gij(ξ) = δij. (5.15)
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A Riemannian manifold is curved from the metric point of view when it does not have
a coordinate system satisfying (5.15). We will see later that a manifold is (locally) flat
when and only when the Riemann–Christoffel curvature tensor vanishes. We need
an affine connection to define the curvature tensor.

5.3 Affine Connection

Tangent space Tξ is a local approximation of M at ξ. However, a collection of Tξ’s
at all ξ does not recover the entire figure of M without specifying how Tξ and Tξ′

(ξ �= ξ′) are related. It is the role of an affine connection to establish a one-to-one
mapping between Tξ and Tξ′ , in particular when ξ and ξ′ are infinitesimally close.
The entire figure of M will be recovered from the aggregate of Tξ’s by using an affine
connection.

Let us consider two nearby tangent spaces Tξ and Tξ+dξ. Let

X = Xiei(ξ) ∈ Tξ, (5.16)

X̃ = X̃iei(ξ + dξ) ∈ Tξ+dξ (5.17)

be two tangent vectors belonging to Tξ and Tξ+dξ, respectively. How different are
they? We cannot compare them directly, because they belong to different tangent
spaces. The basis vectors ei = ei(ξ) ∈ Tξ and ẽi = ei(ξ + dξ) ∈ Tξ+dξ are different,
so even when the components of Xi and X̃i are the same, we cannot say they are
equal.

A manifold is a continuum, so Tξ and Tξ+dξ would be very similar, almost the same
intuitively speaking, because the two tangent spaces become identical as dξ tends to
0. We define a one-to-one affine correspondence between two nearby tangent spaces
such that it becomes identical as dξ tends to 0. As an example, consider a curved
surface embedded in a three-dimensional Euclidean space. The tangent spaces at ξ
and at ξ + dξ are slightly different in the three-dimensional space. We shift Tξ+dξ

in parallel such that the origins of Tξ and Tξ+dξ coincide in the three-dimensional
space. However, the directions of ei and ẽi are slightly different when the surface is
curved. We project the shifted ẽi to Tξ (Fig. 5.3) and let it be e′

i ∈ Tξ. The projected
e′

i is the counterpart of ẽi ∈ Tξ+dξ in Tξ, so a correspondence between Tξ and Tξ+dξ

is established by this projection. This is an example of affine connection.
We begin with technical expressions of an affine connection. Let us map the basis

vector ẽi of Tξ+dξ to Tξ, by which an affine correspondence is established. It is the
projection in the ambient Euclidean space in the previous example, but we consider
a more general situation. The map e′

i ∈ Tξ of ẽi ∈ Tξ+dξ is close to ei(ξ), so it is
represented as

e′
i = ei + dei. (5.18)
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Fig. 5.3 Shift ẽi ∈ Tξ+dξ to
P. The shifted ẽi does not
belong to Tp. Project it to Tp,
obtaining e′

i ∈ Tp which is
slightly different from
ei ∈ Tp

ie
ie

PT

ie

PTie

.

.~

shifted
.

~

The difference dei is a vector of Tξ written in the component form as

dei =
(

dej
i

)
ej. (5.19)

The components dej
i become 0 as dξ → 0. So they are linear in dξ and we put

dej
i = Γ

j
ki(ξ)dξk (5.20)

as the first-order approximation, where the coefficient Γ
j

ki is a quantity having three
indices.

A linear correspondence between Tξ and Tξ+dξ is established by giving a quantity

Γ =
(
Γ

j
ki

)
having three indices. They are called the coefficients of an affine con-

nection which is to be established. The coefficients are given by the inner products
of dei and em as

〈dei, em〉 = Γ
j

kigjmdξk = Γkimdξk, (5.21)

where
Γkim = Γ

j
kigmj (5.22)

is the covariant expression (lower indices expression) of Γ .
There still remains the problem of determining Γkji. The traditional way is to use

the Riemannian metric gij. It is the Levi–Civita connection (Riemannian connection)
introduced in Sect. 5.9. Another way is to use a divergence D

[
ξ : ξ′] defined in M.

This leads us to dually coupled affine connections, which we will see in the next
chapter.
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5.4 Tensors

A tensor is a quantity having a number of components such as A = (
Ai

)
, G = (

gij
)

and T = (
Tijk

)
. A vector is a tensor having only one index. More precisely, a tensor

is a quantity associated with tangent space Tξ spanned by n tangent vectors {ei}. A
vector A is represented in this basis as

A = Aiei (5.23)

in the component form, where the Einstein summation convention is working.
Let

{
ei

}
be the dual basis, which is given by

ei = gijej, ej = gjiei (5.24)

by using the metric tensor G = (
gij

)
and its inverse G−1 = (

gij
)
. Note that the dual

basis was denoted previously as e∗i, but we hereafter omit ∗, because the upper index
i of ei shows that it is a dual basis vector. Vector A is represented in the dual basis as

A = Aiei (5.25)

so that we have
Ai = gijA

j. (5.26)

A tensor K = (
Kij

klm
)
, for example, is a quantity represented, as

K = Kij
klmeiejekelem (5.27)

in the linear form of the product eiejekelem of basis vectors. The product is formal
and is just a concatenation of basis vectors. When an index is in the upper position,
as in Ai, it is said to be contravariant, and when it is in the lower position, as in Ai, it
is said to be covariant. A tensor may have contravariant and covariant components
at the same time, as in Kij

klm.
When another coordinate system ζ = (ζκ) is adopted, the basis vectors change

by the coordinate transformation as in (5.8). Therefore, the component of a vector
changes, as in

Aκ = Jκ
i Ai (5.28)

for a contravariant (upper index) vector and

Aκ = Ji
κAi (5.29)

for a covariant vector. Similarly, for a tensor like Kij
klm, the components change as

in
Kκλ

μντ = Ji
κJj

λJμ
k Jν

l Jτ
mKij

klm. (5.30)
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For a scalar function f (ξ), its gradient

∇f (ξ) = (∂if (ξ)) , ∂i = ∂

∂ξi
(5.31)

is a covariant vector, because of

∂κf = Ji
κ∂if , ∂κ = ∂

∂ζκ
. (5.32)

The Fisher information matrix (5.13) is a tensor. We define a quantity

Tijk = E
[
∂il(x, ξ)∂jl(x, ξ)∂kl(x, ξ)

]
. (5.33)

It is a covariant tensor having three indices and is symmetric. We call it a (statistical)
cubic tensor for short. Two tensors G and T will play a fundamental role in the

manifold of probability distributions.
Not all indexed quantities are tensors. For example, the second derivative of a

scalar function f
fij = ∂i∂jf (ξ) (5.34)

gives a quantity having two indices, but it is not a tensor. By changing the coordinate
system from ξ to ζ, we have

fκλ = ∂κ∂λf = ∂κ

(
Jj
λ∂jf

)
= Ji

κJj
λfij +

(
∂κJj

λ

)
∂jf . (5.35)

This shows that it is not a tensor. (It is a tensor at the critical point where ∂jf = 0
holds.)

It should be noted that Γ is not a tensor. By changing the coordinate system from
ξ to ζ, dei changes as in

deκ = d
(
Ji
κei

) = (
∂λJi

κ

)
dζλei + Ji

κdei (5.36)

in the new coordinate system. By using this relation, after some calculations, we
have

Γκλμ = Ji
κJj

λJk
μΓijk +

(
∂κJj

λ

)
Jk
μgjk . (5.37)

So it is not a tensor. Note that, even if

Γκλμ(ζ) = 0 (5.38)

holds in one coordinate system, it does not mean that

Γijk(ξ) = 0 (5.39)
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in another coordinate system. Although it is not a tensor, it has its own meaning,
representing the nature of the coordinate system. In a Euclidean space,

Γijk = 0 (5.40)

in an orthonormal coordinate system ξ, but if we use the polar coordinate system ζ

Γκλμ �= 0, (5.41)

because the tangent vector er in the radial direction changes depending on the position
in the polar coordinate system.

When an equation is written in a tensor form such as

Kij
kl (u, v, . . .) = 0, (5.42)

depending on physical quantities u, v . . ., it has the same form in other coordinate
systems

Kκλ
μν (u, v, . . .) = 0. (5.43)

In this sense, a tensorial equation is invariant. A. Einstein obtained the equation of
gravity in terms of tensors, because he believed that the law of nature should have
the same form whichever coordinate system we use, and hence it should be written
in a tensorial form.

5.5 Covariant Derivative

A vector field X is a vector-valued function on M, the value of which at ξ is given
by a vector

X(ξ) = Xi(ξ)ei(ξ) ∈ Tξ. (5.44)

When a vector field is given, it is possible to evaluate the intrinsic change of the
vector as position ξ changes, by using the affine connection.

In order to see the intrinsic change between X(ξ) and X(ξ + dξ), since they belong
to different tangent spaces, we need to map X(ξ + dξ) ∈ Tξ+dξ to Tξ for comparison.
Since the basis vector ẽi = ei(ξ + dξ) is mapped to Tξ by

e′
i = ei(ξ) + Γ k

ji ekdξj, (5.45)

vector X(ξ + dξ) is mapped to Tξ as

X̃ = Xk(ξ + dξ)ẽk = (
Xkek + ∂jX

kekdξj + Γ m
jk Xkemdξj

)
, (5.46)
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where the Taylor expansion of Xk(ξ + dξ) is used. Hence, their difference is evalu-
ated as

X̃ − X(ξ) = (
∂iX

k + Γ k
ij Xj

)
dξiek. (5.47)

This shows the intrinsic change of X(ξ) as ξ changes by dξ. The rate of intrinsic
change along the coordinate curve ξi is denoted as

∇iX
k = ∂iX

k + Γij
kXj. (5.48)

This is called the covariant derivative of X(ξ) and ∇iXk is a tensor.
Let Y(ξ) be another vector field. Then, the directional covariant derivative of X

along Y is denoted as

∇Y X = Yi∇iX
k = Yi

(
∂iX

k + Γij
kXj

)
ek. (5.49)

This is the covariant derivative of X along Y . It is again a vector field.
We can define the covariant derivative of a tensor, e.g.,

K = Kij
k eiejek (5.50)

in a similar way, since it is spanned by multilinear vector products of the basis vectors
ei, ej, ek .

For a scalar function f (ξ), its change is measured by ordinary differentiation.
Hence, vector field Y(ξ) gives its directional derivative

Yf = Yi∂if . (5.51)

Note that, for a vector field X, the partial derivatives of its components ∂iXj(ξ) are not
a tensor. We should use the covariant derivative for evaluating its intrinsic change.

5.6 Geodesic

A curve ξ(t) is called a geodesic when its direction does not change. So it is a gener-
alization of the straight line. Here, a change in direction is measured by the covariant
derivative derived from an affine connection. Note that this does not necessarily mean
that it is a curve of minimal distance connecting two points, although this is the literal
definition of a geodesic. The minimality and straightness can be different in a general
manifold. It is possible to define an affine connection by using the metric such that
a straight line (geodesic) has the minimality of distance, as is given in Theorem 5.2.
But a divergence function gives a more general affine connection.

The tangent vector of curve ξ(t) at t is given by

ξ̇(t) = ξ̇i(t)ei(t), (5.52)
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Fig. 5.4 Geodesic: ξ̇(t + dt)
corresponds to ξ̇(t)

.
.

ξ( )t
. ξ( )t dt+

.

ξ( )t
ξ( )t dt+

t

M

where ei(t) = ei {ξ(t)} and · denotes the derivative d/dt. When ξ(t) is a geodesic, the
tangent vector ξ̇(t + dt) ∈ Tξ(t+dt) corresponds to ξ̇(t) ∈ Tξ(t) by the affine connec-
tion. See Fig. 5.4. Since the change of the tangent direction of a curve is measured
by the covariant derivative of ξ̇ along itself, the equation of the geodesic is

∇ξ̇ ξ̇ = 0. (5.53)

This is given in the component form as

ξ̈i(t) + Γ i
jk ξ̇

j(t)ξ̇k(t) = 0. (5.54)

If we consider the equation
∇ξ̇ ξ̇ = c(t)ξ̇, (5.55)

ξ(t) does not change the direction ξ̇(t) of the curve, too, but its magnitude may
change. However, by choosing the parameter t adequately, it is possible to reduce
(5.55) to (5.54). Hence we consider only the case of (5.54).

5.7 Parallel Transport of Vector

We can transport a vector A ∈ Tξ+dξ at ξ + dξ to Tξ at ξ without changing it “intrin-
sically”. The affine connection determines this parallel transport. For two distant
points ξ and ξ′, we continue the process of parallel transport of a vector along a curve
ξ(t) connecting ξ and ξ′.

Define a vector field
A(t) = Aiei(t) (5.56)

along curve ξ(t) connecting P and Q (see Fig. 5.5). When its covariant derivative
along the curve vanishes,
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Fig. 5.5 Parallel transport of
A(0) at ξ0 to A(1) at ξ1
along curve ξ(t)

A(0)

A(1)A( )t

t

t

M

P: 0

Q:
1

∇ξ̇A(t) = 0, (5.57)

A(t) is intrinsically the same at any ξ(t). This is written in the component form as

Ȧi(t) + Γ i
jk(t)A

k(t)ξ̇j(t) = 0. (5.58)

When A(t) satisfies (5.57) or (5.58), we say that A(0) at Tξ(0) is transported
parallelly to A(1) at Tξ(1). The parallel transport depends in general on the path
along which it is transported. So we denote the parallel transport of a vector A from
ξ0 = ξ(0) to ξ1 = ξ(1) along curve c = ξ(t) by

A(1) =
∏

c

ξ1

ξ0

A(0). (5.59)

5.8 Riemann–Christoffel Curvature

A manifold is curved in general. When a vector is transported in parallel from one
point to another, the resultant vector depends on the path along which it is transported.
This never happens in a flat manifold. In order to show how curved a manifold
is, we define the Riemann–Christoffel (RC) curvature tensor determined from the
affine connection. One may skip this section, since we do not use RC curvature
in applications in this monograph. When the RC curvature tensor vanishes, that is,
when it is identically equal to 0, the manifold is (locally) flat. When it is flat, there
exists an affine coordinate system such that each coordinate curve is a geodesic and
its tangent vector coincides at any point by parallel transport.
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5.8.1 Round-the-World Transport of Vector

Let us consider two curves c1 : ξ1(t) and c2 : ξ2(t), 0 ≤ t ≤ 1, both connecting the
same two points ξ0 = ξ0(0) and ξ1 = ξ1(1). When a vector A at ξ0 is transported
to ξ1 in parallel along curve c1, it becomes

∏
c1

A. If we transport
∏

c1
A back to ξ0

along the same curve c1 in reverse, it is A. Now we transport A in parallel along the
two curves c1 and c2. The resultant vectors,

∏
c1

A and
∏

c2
A, are different in general

(Fig. 5.6). This implies that when we transport a vector from ξ0 to ξ1 along path c1

and then transport it back to the original point ξ0 along the other path c2 in reverse,
the resultant vector is different from A. So a vector changes when it is transported
along a loop (consisting of path c1 and reverse path of c2). In other words, a vector
is changed by a round-the-world trip.

The change may be used to measure how curved M is. To evaluate the change,
we consider an infinitesimally small quadrangle connecting four points P, Q, R and
S, where their coordinates are

P : ξ, Q : ξ + d1ξ, R : ξ + d1ξ + d2ξ, S : ξ + d2ξ. (5.60)

(See Fig. 5.7.) We transport A in parallel first from P to Q by d1ξ. Then, A becomes
A1 = A + d1A, the components of which are

d1Ai = −Γ i
jkAkd1ξ

j. (5.61)

We further transport A1 from Q to R along the path
−→
QR = d2ξ. Then, the transported

vector at R is A12 = A + d1A + δ12A, where the components of additional change
δ12A are

δ12Ai = −Γ i
jk(ξ + d1ξ)

(
Ak + d1Ak

)
d2ξ

j. (5.62)

Fig. 5.6 Parallel transport of
A via c1 is different from that
via c2

2
Π Ac

1
Π Ac.
.A

c2

c1
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Fig. 5.7 Parallel transports
of A along PQR and PSR M
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Since Γ is evaluated at ξ + d1ξ, the Taylor expansion gives

δ12Ai = −Γ i
jkd2ξ

jAk − ∂lΓ
i

jkd1ξ
ld2ξ

jAk + Γ i
jkΓ

k
lmd2ξ

jd1ξ
lAm. (5.63)

Now, we transport A along the different route, first along the path
−→
PS = d2ξ to S

and then to R along
−→
SR = d1ξ. The resultant change is given by exchanging d1ξ and

d2ξ in (5.63). The result is

δ21Ai = −Γ i
jkd1ξ

jAk − ∂lΓ
i

jkd2ξ
ld1ξ

jAk + Γ i
jkΓ

k
lmd2ξ

jd1ξ
lAm. (5.64)

How different are the resultant vectors? By subtracting A21 from A12 where (5.63)
and (5.64) are used, the result is written as

A21 − A12 = δAi = Rjkl
iAl

(
d1ξ

jd2ξ
k − d1ξ

kd2ξ
j
)
, (5.65)

where we put
Rijk

l = ∂iΓjk
l − ∂jΓik

l + Γim
lΓjk

m − Γjm
lΓik

m. (5.66)

We can prove that Rijk
l is a tensor. It is called the Riemann–Christoffel (RC)

curvature tensor. This shows how a vector changes by the round-the-world trip along
an infinitesimal loop. We denote the infinitesimal loop encircling P, Q, R, S and P
by a tensor

df jk = (
d1ξ

jd2ξ
k − d1ξ

kd2ξ
j
)
, (5.67)
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Fig. 5.8 Small surface
element, loop and membrane

d1

d2

( )t

df ij

which is antisymmetric with respect to the two indices i and j,

df ij = −df ji. (5.68)

This is a small surface element, representing a surface spanned by d1ξ and d2ξ
(Fig. 5.8). Equation (5.65) is written as

δAi = Rjkl
iAldf jk . (5.69)

When vector A is transported in parallel along a general loop ξ(t), 0 ≤ t ≤ 1,
ξ(0) = ξ(1), we span a membrane encircled by the loop (see Fig. 5.8). Then, the
changed ΔA due to the round-the-world parallel transportation is given by the surface
integral

ΔAi =
∫

Rjkl
iAldf jk . (5.70)

This does not depend on the way of spanning the membrane, as is clear from the
Stokes’ Theorem.

5.8.2 Covariant Derivative and RC Curvature

The partial derivative is always commutative,

∂i∂j = ∂j∂i. (5.71)

However, this does not in general hold for the covariant derivative,

∇i∇j − ∇j∇i �= 0. (5.72)
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The covariant derivative of ej in the direction of basis vector ei is

∇ei ej = Γij
kek . (5.73)

By using this, we have

(∇ei∇ej − ∇ej∇ei

)
X(ξ) = Rijk

lXkel. (5.74)

We omit the proof, but we see that the RC curvature shows the degree of non-
commutativity of the covariant derivative.

In general, we can define the RC curvature by

R(X, Y)Z = ∇X (∇Y Z) − ∇Y (∇XZ) − ∇[X,Y ]Z, (5.75)

where
[X, Y ] = XY − YX = (

Xj∂jY
i − Yj∂jX

i
)

ei. (5.76)

This is a sophisticated definition of the RC curvature tensor which one sees in modern
textbooks on differential geometry. However, it is difficult to understand the meaning
of the RC curvature from it.

5.8.3 Flat Manifold

When the RC curvature vanishes, M is said to be flat. The parallel transport of a
vector does not depend on the path in this case. Let us consider a set of basis vectors
{ei} in the tangent space at a point. We construct n geodesics passing through the
point in the directions of ei. We then have n coordinate curves θi, of which tangent
vectors ei are the same everywhere. This generates a flat coordinate system θ = (

θi
)
.

Indeed, we transport the tangent vectors ei to any point and compose the geodesics
the directions of which are ei. Vectors ei are parallel at any point and we have a net
of coordinate curves θ.

Since the tangent vectors of a coordinate curve θi are all in parallel, we have

∇ej ei = 0. (5.77)

Therefore, from (5.73) we have
Γjik = 0. (5.78)

Hence, when M is flat, we have an affine coordinate system consisting of geodesics
in which (5.78) holds at any ξ.
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5.9 Levi–Civita (Riemannian) Connection

We have so far treated the metric and affine connection separately. However, it is
possible to define an affine connection such that it is essentially related to the metric,
giving a unified picture. This is Riemannian geometry. It requires that the magnitude
of a vector does not change by the parallel transport. This establishes a relation
between the metric and the affine connection (see Fig. 5.9).

It is easy to see the equivalence of the following two propositions of parallel trans-
portation: (1) The magnitude of a vector does not change by parallel transportation,

〈A, A〉ξ0
=

〈∏
A,

∏
A
〉
ξ1

, for any A. (5.79)

(2) The inner product of two vectors does not change by parallel transportation,

〈A, B〉ξ0
=

〈∏
A,

∏
B
〉
ξ1

, for any A, B. (5.80)

We consider an infinitesimal parallel transport of two basis vectors along the coor-
dinate curve ξi. Then, when the length of a vector does not change, we have

gij(ξ + dξ) = 〈ei(ξ + dξ), ej(ξ + dξ)〉ξ+dξ = 〈ei(ξ) + dei, ej(ξ) + dej〉ξ. (5.81)

Because gij(ξ + dξ) = gij(ξ) + ∂kgijdξk , this condition is written as

∂kgij = Γkij + Γkji. (5.82)

More generally, this condition is equivalent to

Z〈X, Y〉 = 〈∇ZX, Y〉 + 〈X,∇Z Y〉, (5.83)

Fig. 5.9 The magnitude of A
is equal to the magnitude of∏

c A Πc

c

.

.

P

Q

A
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for three vector fields X, Y and Z . When an affine connection satisfies this condition,
it is said to be metric. The metric affine connection is uniquely determined from
metric gij, provided the symmetric condition

Γijk = Γjik (5.84)

holds.

Theorem 5.1 When the parallel transport does not change the magnitude of a vector,
there is a unique symmetric affine connection given by

Γijk(ξ) = 1

2

(
∂igjk + ∂jgik − ∂kgij

)
. (5.85)

It is an interesting exercise to prove this from (5.82). It is called the Levi–Civita
connection or Riemannian connection. Many conventional textbooks on differential
geometry study only the Levi–Civita connection. By using the Levi–Civita connec-
tion, we have the following convenient property.

Theorem 5.2 A curve that connects two points by a minimal distance is a geodesic
under the Levi–Civita connection, where the length of a curve c = ξ(t) connecting
ξ(0) and ξ(1) is given by

s =
1∫

0

√
gij(t)ξ̇

i
(t)ξ̇

j
(t)dt. (5.86)

It is possible to obtain (5.54) and (5.85) by the variational method, δs = 0, of min-
imizing (5.86) with respect to curve ξ(t). This is also a good exercise. See Fig. 5.10.

Fig. 5.10 A Riemannian
geodesic ξ(t) is a curve
which does not change the
direction ξ̇(t), and also the
distance s is minimized
along it

Q

P
.

.
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5.10 Submanifold and Embedding Curvature

We consider a submanifold embedded in a larger manifold. It has embedding curva-
ture when it is curved in the ambient manifold. This is different from the RC curvature.
It is useful to embed a manifold in a simple (e.g. flat) higher-dimensional ambient
manifold and study its properties in the ambient manifold. Geometrical quantities
are transferred from a simple ambient manifold to the submanifold by embedding.

5.10.1 Submanifold

Let S be a submanifold embedded in M (Fig. 5.11). Let ξ = (
ξi

)
be a coordinate

system of M, i = 1, . . . , n and u = (ua) be a coordinate system of S, a = 1, . . . , m,
where we assume n > m. Since a point u in S is also a point in the ambient M, its
coordinates in M are specified by u as

ξ = ξ(u). (5.87)

We consider the case that ξ(u) is differentiable with respect to u.
The tangent vector ea along the coordinate curve ua of S is

ea = ∂a (5.88)

and the tangent space TS
u of S is spanned by them (Fig. 5.12). However, they are

regarded as tangent vectors at point ξ(u) of M by embedding. They are represented
in M as

Fig. 5.11 Submanifold S
embedded in M

u= ( )

u
S

M
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Fig. 5.12 Tangent vectors
ea of submanifold

T

u= ( )

u
S

M

u

ub
ua

eb ea S
u

ea = ∂ξi

∂ua
ei

(
∂a = ∂ξi

∂ua
∂i

)
(5.89)

in terms of the basis vectors ei ∈ Tξ of M. Defining

Bi
a = ∂ξi

∂ua
, (5.90)

we have
ea = Bi

aei. (5.91)

A vector X = Xaea ∈ TS
u is a vector X = Xiei ∈ Tξ and

Xi = Bi
aXa. (5.92)

Submanifold S inherits the geometrical structures of M. The magnitude of a
tangent vector A in TS

u is given by its magnitude in M. Hence, the metric

gab = 〈ea, eb〉 (5.93)

in S is given by
gab = Bi

aBj
bgij. (5.94)

5.10.2 Embedding Curvature

An affine connection is naturally transferred to S from M. Let ẽa = ea(u + du) ∈
TS

u+du be a basis vector at u + du of S and we map it in parallel to TS
u . We first
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transport it in M from ξ(u) to ξ(u + du) in parallel. The resultant vector is denoted
as e′

a = ea + dea ∈ Tξ(u), where dea is given by the covariant derivative of ea in the
direction of eb = Bi

bei in M,
dea = ∇eb eadub. (5.95)

We calculate ∇ea eb in M,

∇ea eb = Bi
a∇ei

(
Bj

bej

)
= Bi

a∂iB
k
bek + Bi

aBj
b∇ei ej

=
(

Bi
a∂iB

k
b + Bi

aBj
bΓij

k
)

ek

= Γab
kek, (5.96)

where we put
Γab

k = Bi
a∂iB

k
b + Bi

aBj
bΓij

k . (5.97)

Here, the vector dea is not necessarily included in the tangent space of S (Fig. 5.13).
So we decompose it in the tangent direction of S and its orthogonal direction,

dea = de‖
a + de⊥

a , (5.98)

where de‖
a ∈ TS

u and de⊥
a is orthogonal to S. We define the parallel transport of ẽa

within S by the change de‖
a, neglecting the change in the orthogonal direction:

ẽa = ea + de||
a . (5.99)

Rewriting de‖
a in terms of basis vectors {eb}, the induced affine connection of S is

given as
Γabc(u) = Bi

aBj
bBk

cΓijk + Bj
c∂aBi

bgij. (5.100)

The orthogonal direction of de⊥
a represents how S is curved in M. To show the

orthogonal component, we supplement TS
u with n − m orthogonal vectors eκ,κ =

n − m + 1, . . . , n, such that the entire vectors {ea, eκ} span the tangent space of M.
Then, the orthogonal part is given by

δe⊥
a = Hab

κekdub, (5.101)

Fig. 5.13 Decomposition of
dẽa ∈ Tξ(u) in the orthogonal
part de⊥

a and parallel part

de||
a with respect to TS

u

ade

ea
~d

ea

ead

Tu
S
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where we use the covariant derivative in M to define

Hbaκ = 〈∇eb ea, eκ〉. (5.102)

This is the embedding curvature of S, sometimes called the Euler–Schouten curva-
ture tensor.

The embedding curvature is different from the RC curvature, which is derived from
the affine connection Γabc. The RC curvature is the intrinsic curvature considering
only inside S. As a simple example, let us consider a cylinder S embedded in a three-
dimensional Euclidean manifold M. It is curved in M, so it has non-zero embedding
curvature. But its RC curvature vanishes and Euclidean geometry holds inside S. If
we live in S and do not know the outer world of three dimensions, we enjoy Euclidean
geometry in S where the RC curvature is 0. But S has non-zero embedding curvature.

Remarks

Differential geometry studies properties of a manifold by its local structure. A Rie-
mannian manifold is a typical example, where a manifold is equipped with a metric
tensor G = (

gij
)

by which the distance of two nearby points is measured. It is locally
approximated by a Euclidean space but is curved in general. Modern differential
geometry further studies the global topological structure of a manifold. It is inter-
esting to see how the global structure is restricted by the local structure such as
the curvature. This is an important perspective. However, we have not mentioned the
global properties, because most (though not all) applications use only local structure.

Since differential geometry has been developed as pure mathematics, mathemati-
cians have constructed a rigorous, sophisticated theory, excluding intuitive definitions
of geometrical concepts. However, once such a rigorous theory is established, we
may use intuitive understanding for applications. Part II is an attempt to introduce
the modern concepts of differential geometry without tears to beginners.

After non-Euclidean geometry was developed in the 19th century, people came
to know that there existed non-Euclidean spaces. B. Riemann, in his professorship
lecture, proposed the concept of Riemannian geometry, which is non-Euclidean and
curved. He conjectured that the real world might be Riemannian on a cosmological
scale or on an atomic scale. His view was proved true in the 20th century in relativity
theory and elementary particle theory.

There are many of applications of differential geometry. Relativity theory is one
of them, in which Einstein introduced the concept of a torsion tensor to establish
a unified theory (unification of gravity and electromagnetism). Unfortunately, this
interesting idea failed. But the torsion tensor survived in mathematics. The torsion
tensor is a third-order tensor of which the first two indices are anti-symmetric. This
is a new quantity to supplement the Riemannian structure of {M, G}, although we
have not mentioned it here.

A Riemannian manifold with torsion plays a fundamental role in continuum
mechanics including dislocations. A dislocation field in a continuum is identified
with a torsion field, and a rich theory has been established. See, e.g., Amari [1962,
1968]. Another application is the dynamics of electro-mechanical systems, such as
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motors and generators, by Gabriel Kron. Here, non-holonomic constraints play a role,
and are converted to torsion. Recent robotics also uses non-holonomic constraints.
Differential geometry plays important roles in various areas.

Information geometry also uses differential geometry, where the invariance crite-
rion plays a fundamental role in defining the geometrical structure of a manifold of
probability distributions. However, the conventional edifice of differential geometry
in textbooks is not enough to explore its structure. We need a new concept of duality
of affine connections with respect to the Riemannian metric. In the next chapter, we
study a Riemannian manifold equipped with dually coupled affine connections.



Chapter 6
Dual Affine Connections and Dually
Flat Manifold

We have considered one affine connection, namely the Levi–Civita connection, in
a Riemannian manifold M . However, we can establish a new edifice of differential
geometry, by treating a pair of affine connections which are dually coupled with
respect to the Riemannian metric. Such a structure has not been described in conven-
tional textbooks, but is the heart of information geometry. Mathematically speaking,
in addition to the Riemannian structure {M, G}, we study the structure {M, G, T },
which has a third-order symmetric tensor T in addition to G. As an important special
case, we study a dually flat Riemannian manifold. It may be regarded as a dualistic
extension of the Euclidean space. The generalized Pythagorean theorem and projec-
tion theorem hold in such a manifold. They are particularly useful in applications.

6.1 Dual Connections

The Levi–Civita connection is the only metric affine connection (without torsion) that
preserves the metric by parallel transport. However, there is another way of preserving
the metric by using two affine connections. We consider here two symmetric affine
connections Γ and Γ ∗ and denote the associated parallel transports as

∏
and

∏∗,
respectively. These affine connections are dually coupled when the parallel transports
of vectors A and B, one by

∏
and the other by

∏∗, do not change their inner product,

〈A, B〉 =
〈∏

A,
∏∗

B
〉
. (6.1)

See Fig. 6.1. Such a pair of affine connections are said to be dually coupled with
respect to the Riemannian metric, which defines the inner product. A pair of connec-
tions collaborate to preserve the inner product by parallel transportation of vectors.

© Springer Japan 2016
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Fig. 6.1 Conservation of
inner product by dual
parallel transports

P

B

A

Q

.

.
A

B*

When the two connections are identical, (6.1) reduces to the metric condition (5.80),
so that this is an extension of the metric connection.

We search for analytical expressions of dual connections. Consider two basis
vectors ẽi and ẽ j at point ξ + dξ. We transport them to ξ, one by using affine
connection Γ and the other by dual connection Γ ∗. Then, their parallel transports
are, respectively,

ei + dei = ei + Γki
j e j dξk, (6.2)

e j + d∗e j = e j + Γ ∗
k j

i ei dξk, (6.3)

where d and d∗ denote the changes induced by the parallel transformations due to
Γ and Γ ∗, respectively. From the conservation of the inner product

〈ẽi , ẽ j 〉ξ+dξ = 〈ei + dei , e j + d∗e j 〉ξ, (6.4)

we have
gi j (ξ + dξ) = gi j (ξ) + 〈dei , e j 〉ξ + 〈ei , d∗e j 〉ξ, (6.5)

where higher-order terms are neglected.
By the Taylor expansion, we have the componentwise expression

∂ig jk = Γi jk + Γ ∗
ik j . (6.6)

Compare this with the self-dual case (5.82).
This is rewritten in terms of the covariant derivatives as

Z〈X, Y 〉 = 〈∇Z X, Y 〉 + 〈X,∇∗
Z Y 〉, (6.7)

where X, Y and Z are three vector fields. This is confirmed by using three vector
fields Z = ei , X = e j and Y = ek , as

ei 〈e j , ek〉 = 〈∇ei e j , ek〉 + 〈e j ,∇∗
ei

ek〉, (6.8)

which is the same as (6.6).

http://dx.doi.org/10.1007/978-4-431-55978-8_5
http://dx.doi.org/10.1007/978-4-431-55978-8_5
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The average of two dual connections is given by

Γ 0
i jk = 1

2

(
Γi jk + Γ ∗

i jk

)
. (6.9)

The related covariant derivative is

∇(0) = 1

2

(∇ + ∇∗) . (6.10)

From (6.7), we see that ∇0 satisfies (5.83) and Γ 0
i jk is the Levi–Civita connection.

Let us define
Ti jk = Γ ∗

i jk − Γi jk . (6.11)

Then, the dual connections are written as

Γi jk = Γ 0
i jk − 1

2
Ti jk, Γ ∗

i jk = Γ 0
i jk + 1

2
Ti jk . (6.12)

Theorem 6.1 When Γ and Γ ∗ are dual affine connections, T is a symmetric tensor
given by

∇ig jk = Ti jk, (6.13)

∇∗ig jk = −T i jk . (6.14)

Proof We calculate the covariant derivative of tensor G = (
gi j

)
. It is given by

∇ig jk = ∂ig jk − Γik
mgmj − Γi j

mgmk . (6.15)

Since ∇0 is the metric connection,

∇0
i g jk = ∂ig jk − Γ 0

ik j − Γ 0
i jk = 0. (6.16)

Hence, we have

∇ig jk = 1

2

(
Ti jk + Tik j

)
. (6.17)

Since g jk is symmetric with respect to j and k, we have

∇ig jk = Ti jk . (6.18)

Moreover, Γi jk is a symmetric connection, so Ti jk is symmetric with respect to i
and j . Hence Ti jk is symmetric with respect to three indices, i, j , and k. Ti jk is
a tensor, because it is the covariant derivative of tensor g jk . (6.14) is also derived
similarly. �

http://dx.doi.org/10.1007/978-4-431-55978-8_5
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Remark S. Lauritzen called Ti jk the skewness tensor. However, it is symmetric, and
so we hesitate to use the term “skewness”, which often implies anti-symmetry. So
we use the term cubic tensor. This is called the Amari–Chentsov tensor by some
researchers (e.g., Ay et al. 2013), since Chentsov defined it and Amari has developed
its theory. The triplet {M, G, T } is also called the Amari–Chentsov structure.

Dual affine connections are determined from {G, T } by (6.12), where gi j is a
positive-definite symmetric matrix and Ti jk is a cubic tensor. When Ti jk = 0, the two
affine connections are identical. Hence, the connection is self-dual and M reduces
to the ordinary Riemannian manifold, having the Levi–Civita connection.

6.2 Metric and Cubic Tensor Derived from Divergence

When a divergence D
[
ξ : ξ′] is defined in M , we show that two tensors gD

i j and T D
i jk

are automatically induced from it. We consider a neighborhood of diagonal position
ξ = ξ′ of D. Since D has two arguments, we introduce the following notation of
differentiation at the diagonal:

Di = ∂

∂ξi
D

[
ξ : ξ′]

ξ′=ξ
, (6.19)

D;i = ∂

∂ξ′i D
[
ξ : ξ′]

ξ′=ξ
. (6.20)

Similarly, for multiple differentiation, we use the notation

Di j;k = ∂2

∂ξi∂ξ j

∂

∂ξ′k D
[
ξ : ξ′]

ξ′=ξ
, (6.21)

etc.
We define the following quantities by using the above notations:

gD
i j = −Di; j , (6.22)

Γ D
i jk = −Di j;k, (6.23)

Γ D∗
i jk = −Dk;i j . (6.24)

We can prove that Γ D and Γ D∗
define affine connections, by checking how they are

transformed by coordinate transformations. We omit the calculations since they are
technical and easy. Their difference

T D
i jk = Γ D∗

i jk − Γ D
i jk (6.25)
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is a third-order symmetric tensor. Hence, we have two characteristic tensors gD
i j and

T D
i jk from a divergence D. The following is a key result connecting a divergence and

dual geometry, derived by Eguchi (1983).

Theorem 6.2 The two affine connections Γ D and Γ D∗
are dual with respect to the

Riemannian metric gD.

Proof By differentiating

gD
i j (ξ) = − ∂2

∂ξi∂ξ′ j
D[ξ : ξ] (6.26)

with respect to ξ, we have

∂kg
D
i j (ξ) = −Dki; j − Di; jk = Γ D

ki j + Γ D∗
k ji . (6.27)

This satisfies (6.6) so that Γ D and Γ D∗
are dual affine connections. �

When a Legendre pair of convex functions ψ(θ) and ϕ(η) are given, where θ and
η are connected by the Legendre transformation, we have a Bregman divergence

Dψ

[
θ : θ′] = ψ(θ) + ϕ

(
η′) − θ · η′, (6.28)

where η′ is the Legendre dual of θ′. The metric tensor derived from it is

gi j (θ) = ∂i∂ jψ(θ) (6.29)

in the θ-coordinates and
gi j (η) = ∂i∂ jϕ(η) (6.30)

in the η-coordinates. Moreover, by differentiating it, we have from (6.23) and (6.24),

Γi jk(θ) = Γ ∗i jk(η) = 0 (6.31)

in the two coordinate systems. This implies that the geometry derived from a convex
function, or the related Bregman divergence, is dually flat and the affine coordinate
systems are θ and η. The cubic tensor is written as

Ti jk = ∂i∂ j∂kψ(θ), T i jk = ∂i∂ j∂kϕ(η) (6.32)

in the two coordinate systems. This justifies our former definition of the dually flat
structure introduced in Part I without differential geometry.
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6.3 Invariant Metric and Cubic Tensor

An f -divergence is an invariant divergence in the manifold of probability distribu-
tions. We calculate the two tensors G f and T f derived from an f -divergence, which
are therefore invariant.

Theorem 6.3 Invariant tensors derived from a standard f -divergence in the mani-
fold of probability distributions are given as

g
f

i j = gi j , (6.33)

T f
i jk = αTi jk, (6.34)

where gi j is the Fisher information matrix and

Ti jk = E
[
∂i l(x, ξ)∂ j l(x, ξ)∂kl(x, ξ)

]
, (6.35)

α = 2 f ′′′(1) + 3. (6.36)

Proof By differentiating an arbitrary f -divergence

D f
[
ξ : ξ′] =

∫
p(x, ξ) f

{
p

(
x, ξ′)

p(x, ξ)

}
dx, (6.37)

with respect to ξ and ξ′ and putting ξ′ = ξ, we have (6.33) and (6.34). �

Remark The uniqueness of the f -divergence under the invariance criterion is
derived from the information monotonicity and decomposability. More strongly, the
Chentsov theorem proves that gi j and αTi jk are the unique invariant second-order
and third-order symmetric tensors in Sn .

6.4 α-Geometry

When Ti jk is a symmetric tensor, so is αTi jk for real α. We call the two affine
connections derived from {G,αT },

Γ α
i jk = Γ 0

i jk − α

2
Ti jk, Γ −α

i jk = Γ 0
i jk + α

2
Ti jk, (6.38)

the α-connection and −α-connection, respectively.

Theorem 6.4 Γ α and Γ −α are dually coupled and the α = 0 connection Γ 0 is the
Levi–Civita connection, which is self-dual.

The proof is easy from (6.12).
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When T f is derived from an f -divergence, it is αT for α satisfying (6.36)
and, moreover, −αT is derived from the dual of the f -divergence. The derived
dual structure is the only invariant geometry in the case of a manifold of proba-
bility distributions. We call it the α-geometry. The α-geometry is derived from the
α-divergence defined in (3.39). It is not dually flat in general. When α = ±1, it
reduces to the KL-divergence, giving a dually flat structure.

For any convex function ψ, we can construct a related α-divergence. In this case,
the α-geometry is induced from the α-divergence defined by

D(α)
ψ

[
θ : θ′] = 4

1 − α2

{
1 − α

2
ψ(θ) + 1 + α

2
ψ

(
θ′) − ψ

(
1 − α

2
θ + 1 + α

2
θ′

)}
.

(6.39)
This is a Jensen-type divergence introduced by Zhang (2004).

6.5 Dually Flat Manifold

We have the following theorem concerning dual curvatures.

Theorem 6.5 When the RC curvature R vanishes with respect to one affine con-
nection, the RC curvature R∗ with respect to the dual connection vanishes and vice
versa.

Proof When the RC curvature vanishes, R = 0, the round-the-world parallel trans-
portation does not change any A:

A =
∏

A. (6.40)

For vector transportations, we always have

〈A, B〉 =
〈∏

A,
∏∗

B
〉
. (6.41)

Hence, when (6.40) holds, we have

〈A, B〉 =
〈
A,

∏∗
B

〉
(6.42)

for any A and B. This implies

B =
∏∗

B (6.43)

showing that the dual RC curvature vanishes, R∗ = 0. �

A manifold is always dually flat when it is flat with respect to one connection.
When M is dually flat, there exists an affine coordinate system θ for which

http://dx.doi.org/10.1007/978-4-431-55978-8_3
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Γi jk(θ) = 0. (6.44)

Each coordinate curve θi is a geodesic. The basis vectors {ei } are transported in
parallel to any position, not depending on a path of transportation.

Similarly, there exists a dual affine coordinate system η for which

Γ ∗i jk(η) = 0 (6.45)

holds. Each coordinate curve ηi is a dual geodesic. Let its direction be ei . Here,
we use a lower index to denote the components of η = (ηi ) and the related basis
vectors are denoted by upper-indexed quantities such as ei . This notation fits our
index notation of raising and lowering indices by using the metric tensors gi j and its
inverse gi j . The Jacobians of the coordinate transformations satisfy

gi j = ∂ηi

∂θ j
, gi j = ∂θi

∂η j
. (6.46)

Therefore, two bases {ei } and
{

ei
}

satisfy

ei = gi j e j , e j = g j i ei . (6.47)

Theorem 6.6 In a dually flat manifold, there exists affine coordinate system θ and
dual affine coordinate system η such that their tangent vectors are reciprocally
orthogonal,

〈ei , e j 〉 = 〈∂i , ∂
j 〉 = δ

j
i . (6.48)

Proof From (6.47), we have

〈ei , e j 〉 = 〈ei , g
jk ek〉 = gikg

jk = δ
j
i . (6.49)

We also have 〈∏
ei ,

∏∗
e j

〉
= 〈ei , e j 〉 = δ

j
i (6.50)

at any point. Note that gi j and g j i depend on the position, but (6.47) holds at any
point. �

6.6 Canonical Divergence in Dually Flat Manifold

We have shown that a dual structure is constructed from a divergence function. In par-
ticular, a dually flat structure is induced from a Bregman divergence. However, many
divergences give the same dual structure. This is because the differential geometry
of the metric and connections is defined from the derivatives of divergence D

[
ξ : ξ′]
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at ξ = ξ′, given in (6.22)–(6.24). That is, it depends only on the values of D
[
ξ : ξ′]

for infinitesimally close ξ and ξ′. There are no unique ways of extending an infini-
tesimally defined divergence to the entire M . That is, D[ξ : ξ] + d

(
ξ, ξ′) gives the

same geometry as D
[
ξ, ξ′] when a non-negative function d

(
ξ, ξ′) satisfies

d(ξ, ξ) = 0, (6.51)

∂i d
(
ξ, ξ′)

|ξ = ∂′
i d

(
ξ, ξ′)

|ξ=ξ′ = 0 (6.52)

∂i∂ j d
(
ξ, ξ′)

|ξ = ∂′
i∂

′
j d

(
ξ, ξ′)

|ξ=ξ′ = 0, (6.53)

∂i∂ j∂
′
kd(ξ, ξ′)|ξ=ξ′ = ∂′

i∂
′
j∂kd

(
ξ, ξ′)

|ξ=ξ′ = 0, (6.54)

where ∂i = ∂/∂ξi and ∂′
i = ∂/∂ξ′i . d

(
ξ, ξ′) = {

D
[
ξ : ξ′]}2

given in (3.25) is such
an example. Interestingly, however, when a manifold is dually flat, we can obtain a
unique canonical divergence, despite the fact that there are many locally equivalent
divergences. To show this, we begin with the following lemma.

Lemma 6.1 When M is dually flat, there are a pair of dual affine coordinate systems
θ and η and of Legendre-dual convex functions ψ(θ) and ϕ(η) satisfying

ψ(θ) + ϕ(η) − θiηi = 0, (6.55)

such that the metric is given by

gi j (θ) = ∂i∂ jψ(θ), gi j (η) = ∂i∂ jϕ(η) (6.56)

and the cubic tensor by

Ti jk(θ) = ∂i∂ j∂kψ(θ), (6.57)

T i jk(η) = ∂i∂ j∂kϕ(η). (6.58)

Proof By using the affine coordinate system θ for which Γi jk(θ) = 0, (6.6) reduces
to

∂ig jk = Γ ∗
ik j . (6.59)

Because the connections are symmetric, we have

∂ig jk = ∂kg j i . (6.60)

We fix index j and denote it by · . So we have

∂igk· = ∂kgi ·. (6.61)

http://dx.doi.org/10.1007/978-4-431-55978-8_3
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Then, there is a function ψ· satisfying

gi · = ∂iψ·, (6.62)

or for each j , we have
gi j = ∂iψ j . (6.63)

Since gi j is symmetric, we have

∂iψ j − ∂ jψi = 0. (6.64)

This guarantees the existence of a scalar function ψ such that

ψ j = ∂ jψ. (6.65)

Hence
gi j = ∂i∂ jψ, (6.66)

where ψ(θ) is convex because gi j is positive-definite. Since ∇i = ∂i for the θ-
coordinates, Ti jk is given from (6.18) by

Ti jk = ∂i∂ j∂kψ(θ). (6.67)

By using the dual affine coordinate system, we have a convex function ϕ(η) that
satisfies (6.56) and (6.58). It is easy to see that the two coordinate systems are
connected by a Legendre transformation, so that the two functions are the Legendre
duals. �

Theorem 6.7 When M is dually flat, there exists a Lengdre pair of convex functions
ψ(θ), ϕ(η) and a canonical divergence given by the Bregman divergence

D
[
θ : θ′] = ψ(θ) + ϕ

(
η′) − θ · η′. (6.68)

They are uniquely determined except for affine transformations. Conversely, the
canonical divergence gives the original dually flat Riemannian structure.

Theorem 6.8 The KL-divergence is the canonical divergence of an exponential
family of probability distributions which is invariant and dually flat.

Remark 1 Many studies begin with the KL-divergence given a priori without any
justification. However, our theory shows that the KL-divergence is an outcome of
dual flatness in the invariant geometry.

Remark 2 The KL-divergence is derived as the unique canonical divergence without
assuming decomposability in the above theorem. See also another derivation by Jiao
et al. (2015).
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For a dually flat M , its affine coordinates θ and η are not unique. Any affine
transformation

θ̃ = Aθ + b, η̃ = A−1η + c, (6.69)

where A is an invertible matrix and b, c are constants, gives a set of dually coupled
coordinate systems. The convex functions ψ(θ) are not unique either, because we
may add a linear term, as in

ψ̃(θ) = ψ(θ) + aθ + d, (6.70)

where a is a vector and d is a scalar. However, the canonical divergence

D
[
θ : θ′] = ψ (θ) + ϕ

(
η′) − θ · η′ (6.71)

is uniquely determined, not depending on a specific choice of affine coordinate
systems.

6.7 Canonical Divergence in General Manifold
of Dual Connections

It is known that there always exists a divergence in a manifold having dual connec-
tions, such that the same dual structure is given by the divergence (Matumoto 1993).
There are many such divergences. So it is an interesting problem to define a canonical
divergence, if possible, in a manifold M having non-flat dual connections. When M
is dually flat, we have a canonical divergence. Kurose (1994) showed that a canonical
divergence called the geometrical divergence exists when M is 1-conformally flat. M
is embedded in Rn+1 in this case. Moreover, when it has constant curvature, the gen-
eralized Pythagorean theorem (Theorem 4.5) holds. The α-divergence is a canonical
divergence of Sn in this sense. Taking these facts into account, we demonstrate an
on-going trial by N. Ay and S. Amari to define a canonical divergence in the general
case, briefly without proof (Ay and Amari 2015, Henmi and Kobayashi 2000).

Consider {M, g,∇,∇∗} of a Riemannian manifold with dual affine connections.
Let ξ be a coordinate system. Given a point ξ p and a tangent vector X belonging to
the tangent space at ξ p, we have a geodesic curve ξ(t),

∇ξ̇ ξ̇(t) = 0, (6.72)

passing through ξ p and its tangent direction is X ,

ξ(0) = ξ p, ξ̇(0) = X. (6.73)

http://dx.doi.org/10.1007/978-4-431-55978-8_4
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When the geodesic reaches point ξq as t increases from 0 to 1,

ξq = ξ(1), (6.74)

ξq is called the exponential map of X ,

ξq = expξ p
(X). (6.75)

Given ξ p and ξq , we have the inverse of the exponential map,

X
(
ξ p, ξq

) = exp−1
ξ p

(
ξq

)
(6.76)

in a neighborhood of ξ p.
We now define a canonical divergence in a general manifold of dual connections.

We first define a divergence between ξ p and ξq by

D̃
[
ξ p : ξq

] =
∫ 1

0
tgi j {ξ(t)} ξ̇i (t)ξ̇ j (t)dt, (6.77)

where ξ(t) is the primal geodesic connecting ξ p and ξq . It can be rewritten as

D̃
[
ξ p : ξq

] =
∫ 1

0
t〈ξ̇(t), ξ̇(t)〉dt

=
∫ 1

0
−〈exp−1

ξ(t)

(
ξ p

)
, ξ̇(t)〉dt. (6.78)

We then define another divergence by using the dual geodesic ξ∗(t) connecting
ξ p and ξq :

D̃∗ [
ξ p : ξq

] =
∫ 1

0
(1 − t)gi j

{
ξ∗(t)

}
ξ̇∗i (t)ξ̇∗ j (t)dt. (6.79)

A canonical divergence is defined by the arithmetic mean of the above two.

Definition A canonical divergence is given by

D
[
ξ p : ξq

] = 1

2

(
D̃

[
ξ p : ξq

] + D̃∗ [
ξ p : ξq

])
. (6.80)

Theorem 6.9 The geometrical structure derived from the canonical divergence
(6.80) coincides with the original geometry. When M is dually flat, it gives the
canonical divergence of the Bregman type. When M is Riemannian (T = 0), it is a
half of the squared Riemannian distance.

In a dually flat manifold, the projection theorem holds: Givenξ p and a submanifold

S ⊂ M , the point ξ̂ p that minimizes D
[
ξ p : ξq

]
, ξq ∈ S, is the geodesic projection
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of ξ p to S such that the geodesic connecting ξ p and ξ̂ p is orthogonal to S at ξ̂ p. The
projection theorem does not hold in general, but we have the following theorem.

Theorem 6.10 The canonical divergence satisfies the projection theorem when

Xi
(
ξq , ξ p

) ∝ −gi j
(
ξq

)
∂′

j D
[
ξ p : ξq

]
, (6.81)

where Xi is the contravariant component of X = exp−1
ξq

(
ξ p

)
and

∂′
j = ∂

∂ξ
j
q

. (6.82)

Proof Consider a divergence ball centered at ξ p and with radius c ≥ 0,

Bc = {
ξ

∣∣D
[
ξ p : ξ

] = c
}
. (6.83)

Let S be a smooth submanifold of M . Let ξ̂ p be the minimizer of D
[
ξ p : ξ

]
, ξ ∈ S.

When c is increasing from 0, the ball Bc touches S at ξ̂ p. The tangent hypersurfaces
of S and Bc are the same at this point, and its normal vector is given by

ni = gi j
(
ξ̂ p

)
∂′

j D
[
ξ p : ξ̂ p

]
. (6.84)

The tangent direction of the geodesic connecting ξ p and ξ̂ p is given by

ξ̇
(
ξ̂ p

)
= X

(
ξ̂ p, ξ p

)
. (6.85)

So the projection theorem holds when the above two share the same direction. �

It is interesting to study when the geodesic projection theorem (6.81) holds. It
holds in the dually flat case. It holds for the α-divergence, and hence it is the canonical
divergence of the α-geometry.

6.8 Dual Foliations of Flat Manifold and Mixed
Coordinates

A dually flat manifold admits two types of foliations, e-foliation and m-foliation,
which are orthogonal to each other. This structure is useful for separating two quan-
tities, one represented in the e-coordinates and the other in the m-coordinates. This
fits particularly well for analyzing a hierarchical system (Amari 2001).
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6.8.1 k-cut of Dual Coordinate Systems: Mixed Coordinates
and Foliation

Let M be a dually flat manifold with dually coupled affine coordinate systems θ
and η. We partition the coordinates into two parts, one consisting of k components
and the other consisting of n − k components. We rearrange the suffixes such that
the first k components consist of θ1, . . . θk and the last n − k components consist of
θk+1, . . . , θn . The same rearrangement is done for the η-coordinates. We call such a
partition a k-cut.

Let us compose a new coordinate system ξ of which the first k components are
the corresponding η-coordinates and the last n − k components are θ-coordinates
such as

ξ = (
η1, . . . , ηk ; θk+1, . . . , θn

)
. (6.86)

This is a new coordinate system called a mixed coordinate system, since m-affine
coordinates and e-affine coordinates are mixed in it. It is not an affine coordinate
system by itself. The basis vectors of the tangent space in the mixed coordinates are
composed of two parts, the first part consisting of

ei = ∂

∂ηi
, i = 1, . . . , k (6.87)

and the second part consisting of

e j = ∂

∂θ j
, j = k + 1, . . . , n. (6.88)

They are orthogonal, because of

〈ei , e j 〉 = 0, i �= j. (6.89)

Therefore, the Riemannian metric in this coordinate system has a block-diagonal
form,

G =
[

gi j 0
0 glm

]
. (6.90)

Let us consider an (n − k)-dimensional submanifold obtained by fixing the first
k coordinates (η-coordinates) to be equal to c = (c1, . . . , ck)

ηi = ci , i = 1, . . . , k (6.91)

and denote it by M∗(c), in which θk+1, . . . , θn run freely. It is an m-flat submanifold,
because it is defined by linear constraints on η-coordinates. For c �= c′, M∗(c) and
M∗(c′) do not intersect,
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M*( )c

*M ( )c

M( )d
( )M d

Fig. 6.2 Dual orthogonal foliation of manifold

M∗(c)
⋂

M∗ (
c′) = φ. (6.92)

Moreover, the entire M is covered by the aggregate of all M∗(c)’s

⋃
c

M∗(c) = M. (6.93)

Hence, M∗(c)’s give a partition of M . Such a partition is called a foliation.
Dually to the above, we fix the second part of the mixed coordinates

(θ-coordinates),
θ j = d j , j = k + 1, . . . , n, (6.94)

where d = (dk+1, . . . , dn) and η1, . . . , ηk run freely. We then have a k-dimensional
e-flat submanifold denoted by M(d). Moreover, M(d)’s form another foliation of
M . We thus have two foliations. Moreover, M(d) and M∗(c) are orthogonal to each
other for any c and d. See Fig. 6.2.

Theorem 6.11 A dually flat M admits a pair of orthogonal k-cut foliations for any
k, one of which is m-flat and the other e-flat.

6.8.2 Decomposition of Canonical Divergence

By using the mixed coordinates, the canonical divergence between two points P and
Q can be decomposed into a sum of two divergences, one representing the difference
in the first part and the other in the second part. Let
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RPQ

RQP

( QM )

Q:( )Q Q,
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P:( )P P,

Fig. 6.3 Foliation and decomposition of KL-divergence

ξP = (
ηP ; θP

)
, ξQ = (

ηQ ; θQ
)

(6.95)

be the mixed coordinates of the two points P and Q. P is located at the intersection
of M∗ (

ηP

)
and M (θP) and Q is at the intersection of M∗ (

ηQ

)
and M

(
θQ

)
. We

m-project P to M
(
θQ

)
and let the projected point be RP Q . We also e-project P to

M∗ (
ηQ

)
and let the projected point be RQ P . See Fig. 6.3. Since the m-geodesic con-

necting P and RP Q is orthogonal to the e-geodesic connecting RP Q and Q, P RP Q Q
forms a right triangle so that the Pythagorean theorem is applicable. We can do the
same thing for the triangle P RQ P Q. Then, we have the decomposition theorem.

Theorem 6.12 The canonical divergence D[P : Q] is decomposed as

D[P : Q] = D
[
P : RP Q

] + D
[
RP Q : Q

]
, (6.96)

D
[
P : RP Q

]
representing the difference in the first part and D

[
RP Q : Q

]
repre-

senting the difference in the second part.

6.8.3 A Simple Illustrative Example: Neural Firing

We show the usefulness of the orthogonal foliation by a simple example. Let us
consider a network consisting of two neurons which emit spikes stochastically. Let x1

and x2 be two binary random variables, taking values xi = 1, i = 1, 2, when neuron i
is excited (emitting a spike) and 0 otherwise. Joint probability p (x1, x2) specifies the
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stochastic behavior of this network. The manifold of all joint probability distributions
M = {p (x1, x2)} forms a three-dimensional exponential family, because

p(1, 1) + p(1, 0) + p(0, 1) + p(0, 0) = 1. (6.97)

This is a set of discrete distributions over four elements, and we can write it in the
exponential form,

p (x1, x2) = exp

{
2∑

i=1

θi xi + θ12x1x2 − ψ(θ)

}
. (6.98)

The affine coordinates are given by

θ = (
θ1, θ2, θ12

)
. (6.99)

The dual coordinates η are

ηi = E [xi ] = Prob {xi = 1} , i = 1, 2, (6.100)

showing the firing rate (probability of xi = 1) of neuron i and

η12 = E
[
xi x j

] = Prob {x1 = x2 = 1} , (6.101)

showing the joint firing rate (the probability of the two neurons firing at the same
time).

We construct mixture coordinates such that the first part consists of η1 and η2 and
the second part consists of θ12. Using the mixed coordinate system

ξ = (
η1, η2 ; θ12

)
, (6.102)

we have a dually orthogonal foliation. The one-dimensional submanifold M∗ (η1, η2)

consists of all the distributions in which the firing rates of the two neurons are fixed to
(η1, η2). The coordinate θ12 in M∗ (η1, η2) represents how firing of the two neurons
is correlated. When θ12 = 0, x1 and x2 are independent, as is seen from (6.98). Given
θ12, the e-flat submanifold M

(
θ12

)
represents distributions for which interaction of

x1 and x2 is fixed to be equal to θ12 but the firing rates of the neurons are arbitrary.
Thus, the partition is done in such a way that the first part represents firing rates of
neurons and the second part represents the interaction of two neurons (Fig. 6.4).

One may measure the degree of interaction by the covariance of x1 and x2,

v = Cov [x1, x2] = η12 − η1η2. (6.103)

It is 0 when the two neurons fire independently. If we use v as a coordinate in
M∗ (η1, η2), we have another coordinate system (η1, η2, v) in M . However, the
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Fig. 6.4 Dual foliation of
S3 = {p(x1, x2)}

M( )12

S3

independent
submanifold
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1 2

)

12 =0

v-axis is not orthogonal to the marginal firing rates η1, η2, while θ12 is. Therefore,
the mixed coordinates are successful in decomposing the firing rates and interaction
orthogonally but v is not.

Given two distributions p (x1, x2) and q (x1, x2), we have the decomposition of
their KL-divergence, as

K L[p : q] = K L[p : r ] + K L[r : q], (6.104)

where r(x1, x2) is the distribution having the same marginal distributions as p and
the same interaction as q. K L[p : r ] represents the divergence due to the difference
in mutual interaction and K L[r : q] represents that due to marginal firing rates.

6.8.4 Higher-Order Interactions of Neuronal Spikes

We can generalize the idea to a network of n neurons (Amari 2001; Nakahara and
Amari 2002; Nakahara et al. 2006; Amari et al. 2003). Let us consider a network
consisting of n neurons, which emit spikes stochastically. Let xi be a binary random
variable, representing emission of spikes. The state of the network is represented by
x = (x1, . . . , xn). The set of all probability distributions p(x) forms SN−1, where
N = 2n , since there are N states x. This is an exponential family. By expanding
p(x) as

log p(x) =
∑

θi xi +
∑

θi j xi x j + · · · + θ1...n x1 . . . xn − ψ, (6.105)

we have

p(x,θ) = exp
{∑

θi xi +
∑

θi j xi x j + · · · + θ1...n x1 . . . xn − ψ
}

. (6.106)
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This is called a log linear model. According to the degrees of variables in xi , we
partition the entire θ in a hierarchical form as

θ = (θ1,θ2, . . . ,θn) , (6.107)

θ1 = (
θ1, . . . , θn

)
, θ2 = (

θ12, θ13, . . . , θn−1n
)
, . . . (6.108)

such that each subvector θk consists of coefficients of monomials x j1 . . . x jk of degree
k.

The dual affine coordinates are composed of

ηi1...ik = E
[
xi1 . . . xik

] = Prob
{

xi1 = 1, . . . , xik = 1
}
, (6.109)

which are joint firing rates of k neurons, k = 1, . . . , n, and they are hierarchically
partitioned as

η = (
η1,η2, . . . ,ηn

)
, (6.110)

where
ηk = (

ηi1...ik

)
, k = 1, 2, . . . , n. (6.111)

The kth mixed coordinate system is composed of

ξ = (
Hk;Θk

) = (
η1, . . . ,ηk;θk+1, . . . ,θn) . (6.112)

Since
Hk = (

η1, . . . ,ηk

)
(6.113)

is composed of the joint firing rates up to k neurons, the other coordinates

Θk = (
θk+1, . . . ,θn) (6.114)

represent the directions orthogonal to the joint firing rates up to k neurons. A change
in θk+1,θk+2, . . . does not affect η1, . . . ,ηk but alters the joint firing rates of more
than k neurons. Hence, Θk represents interactions of more than k neurons orthogonal
to the firing rates up to k neurons.

Among n terms, θ1, . . . ,θn , we can say that θk represents the degree of mutual
interactions among k neurons. θk’s (k ≥ 3) are called the higher-order correlations
or interactions of neurons. Although θ1, . . . ,θn are not mutually orthogonal, θi are
orthogonal to η j ( j �= i).

We show a simple case of n = 3, consisting of three neurons. We have

θ123 = log
p111 p100 p010 p001

p110 p101 p011 p000
, (6.115)

which represents the third-order interactions of the three neurons. It is orthogonal to
firing rates of neurons and joint firing rates of any pair of neurons. Similarly,
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θ12 = log
p110 p000

p100 p010
(6.116)

represents pairwise interactions of neurons 1 and 2, which are orthogonal to the firing
rates of single neurons.

Remark There are many other hierarchical stochastic systems. One is a Markov
chain consisting of various orders. A lower-order system is included in a higher-
order system. Hence, we can decompose them in a dually orthogonal way. The
auto-regressive (AR) and moving-average (MA) models of time series also form
hierarchical stochastic systems, where their degrees compose hierarchy. See Amari
(1987, 2001).

6.9 System Complexity and Integrated Information

We consider a stochastic system which receives an input signal x, processes it and
emits output y, and study its complexity by using a mixed coordinate system. We
regard it a muliterminal stochastic channel having n input and n output terminals,
see Fig. 6.5. Input x = (x1, . . . , xn) and output y = (y1, . . . , yn) are vectors. When
a system is very simple, there is no interaction among different terminals. Hence,
output yi depends only on xi and input x j ( j �= i) does not affect yi . A complex
system has interaction among different terminals and information is integrated to
give an integrated output y. The degree of interaction is used to define a measure of
complexity of the system (Ay 2002, 2015; Ay et al. 2011). Tononi (2008) initiated
a new idea of IIT (integrated information theory) to elucidate consciousness. The
degree of information integration distinguishes a conscious state from unconscious
states in the brain (Balduzzi and Tononi 2008; Oizumi et al. 2014, etc.).

We propose a measure of complexity, or of information integration, by using a
degree of stochastic interaction within a system from the information geometric point
of view, based on part of on-going work with M. Oizumi and N. Tsuchiya. This is an
extension of the work by Ay (2001, 2015), and is related to the Tononi information
integration (Barrett and Seth 2011).

We consider a 2 × 2 system for simplicity, where input is x = (x1, x2) and output
is y = (y1, y2), having only two terminals (Fig. 6.6), although generalization is easy.
We study the binary case where xi and yi take on values 0 and 1, and also the Gaussian
case where x and y are Gaussian random variables with mean 0. The behavior of a
system is described by joint probability distribution p(x, y). When the components
of x and y are binary, it belongs to an exponential family MF , called the full model,

Fig. 6.5 Stochastic
information transmission
channel

x1

x2

xn

y1

y2

yn

x y
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Fig. 6.6 a Channel with two
terminals and b its split
version

x1 y1

x2 y2

x1 y1

x2 y2

(a) (b)

p(x, y) = exp

{∑
θX

i xi +
∑

θY
i yi + θX

12x1x2 + θY
12 y1 y2

+
∑

θXY
i j xi y j + higher-order terms of xi and y j − ψ

}
, (6.117)

described by e-coordinates θ. The higher-order terms are θ12,1x1x2 y1 and so on. We
have the corresponding η-coordinates. The full model is a graphical model shown
in Fig. 6.6a, which is a complete graph, since intrinsic correlations between x1 and
x2 and also between y1 and y2 may exist, as is denoted by the dotted branches in
Fig. 6.6a. Refer to information geometry of a graphical model studied in Chap. 11.

The complexity of a system is measured by the degree to which it is different
from split systems where no interaction exists between xi and y j (i �= j) (Ay 2002,
2015). So we consider a split system S where no mutual interaction exists, as is shown
in Fig. 6.6b. Here, a split model is derived by deleting the branches connecting xi

and y j (i �= j). Let the probability distribution of the split model be q(x, y), the
e-coordinates of which are θ̃. Since there are no branches connecting (x1, y2) and
(x2, y1), we put θ̃XY

12 = θ̃XY
21 = 0. (This is because xi and y j (i �= j) are conditionally

independent where the other variables are fixed.) The higher-order terms are also 0.
(This is because no cliques exist connecting three or four nodes in the split model.)
Hence, a split model has a probability distribution of the form,

q(x, y) = exp

{∑
θ̃X

i xi +
∑

θ̃Y
i yi + θ̃X

12x1x2 + θ̃Y
12 y1 y2

+
∑

θ̃XY
ii xi yi − ψ̃

}
. (6.118)

Split models form an exponential family MS , which has ten degrees of freedom and
is a submanifold of MF .

The split model family MS defined in the above is slightly different from the one
M ′

S defined by N. Ay. In a split model belonging to M ′
S , no direct correlation between

y1 and y2 exists, so θ̃Y
12 = 0 in addition to θ̃XY

12 = θ̃XY
21 = 0. That is, M ′

S is derived
from MS by deleting the branch connecting y1 and y2. M ′

S is an e-flat submanifold
of MS . We do not assume θ̃Y

12 = 0 in MS , because y1 and y2 may be affected by
correlated noises directly given from the environment. Since such correlations are
given rise to by the environmental situation, even when x1 and x2 are independent

http://dx.doi.org/10.1007/978-4-431-55978-8_11
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Fig. 6.7 Split model and
orthogonal projection

MF

MS

p( )x y,

q( )x y,

and xi does not affect y j ( j �= i), y1 and y2 can be correlated in MS , but not in M ′
S .

To explain this situation, consider a Gaussian model,

y = Ax + ε (6.119)

where A is a 2 × 2 matrix and ε is a noise term subject to N (0, V), where V is the
covariance matrix of ε. The components ε1 and ε2 can be correlated.

The degree of system complexity, or of integrated information, of p(x, y) is
measured by the KL-divergence from p(x, y) to the split distribution q̂(x, y) or
q̂ ′(x, y) that is closest to p(x, y) in MS or M ′

S (Fig. 6.7),

q̂(x, y) = DK L
[

p(x, y) : MS
] = arg min

q∈MS

DK L
[

p(x, y) : q(x, y)
]
, (6.120)

q̂ ′(x, y) = DK L
[

p(x, y) : M ′
S

] = arg min
q∈M ′

S

DK L
[

p(x, y) : q(x, y)
]
. (6.121)

They are given by the m-projection of p(x, y) to MS and MS′ . Since we have two split
models MS and M ′

S , we have two definitions of geometric measure of information
integration or stochastic interactions.

Definition Geometric measures of information integration, or system complexity,
are defined by

G I
[

p(x, y)
] = DK L

[
p(x, y) : MS

]
, (6.122)

G I ′[p(x, y)] = DK L
[

p(x, y) : M ′
S

]
. (6.123)

G I ′ is the same as that of Ay (2002, 2015) and also that of Barrett and Seth (2011).
G I is a new measure.

Before comparing these two, we show a criterion which such a measure should
satisfy. Oizumi et al. (2015) postulated that a degree φ of information integration
should satisfy

0 ≤ φ ≤ I [X : Y ], (6.124)
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where I [X : Y ] is the mutual information between x and y. φ should be 0 when
I [X : Y ] = 0, that is, when no information is transmitted from X to Y . They argued
that various measures of φ so far proposed do not necessarily satisfy the postulate,
and defined a new measure φ∗ based on the concept of mismatched decoding, which
satisfies the postulate (Oizumi et al. 2015).

We study properties of G I and G I ′ and see if they satisfy the postulate. Since MS

is an e-flat submanifold constrained by

θXY
12 = θXY

21 = 0, (6.125)

where we use θ instead of θ̃, we define mixed coordinates

ξ = (
ηX

1 , ηX
2 , ηX

12, η
Y
1 , ηY

2 , ηY
12, η

XY
11 , ηXY

22 ; θXY
12 , θXY

21

)
. (6.126)

Then, the m-projection of p(x, y) to MS ,

q̂(x, y) =
∏

MS

p(x, y), (6.127)

keeps the η-part of the mixed coordinates invariant. Therefore, the mixed coordinates
ξ̂ of q̂(x, y) are given by

η̂X
i = ηX

i , η̂X
12 = ηX

12, η̂Y
i = ηY

i , η̂Y
12 = ηY

12, (6.128)

η̂XY
ii = ηXY

ii , θ̂XY
12 = θ̂XY

21 = 0, (6.129)

where ηX
i etc. are those of p(x, y). These results are directly obtained by minimizing

DK L [p : q], q ∈ MS , too. We have a similar result in the case of the m-projection
to M ′

S , where η̂Y
12 = ηY

12 is replaced by θ̂Y
12 = 0.

We see from (6.128) that the m-projection q̂(x, y) is characterized by

q̂X (x) = pX (x), q̂Y ( y) = pY ( y), (6.130)

where pX (x) etc. are the marginal distributions of p(x, y), etc. This means that the
marginal distributions of q̂(x, y) concerning x and y are equal to those of p(x, y),
respectively. Moreover, the conditional distributions are equal:

q̂ (yi |xi ) = p (yi |xi ) , i = 1, 2. (6.131)

The m-projection q̂ ′(x, y) to M ′
S satisfies

q̂ ′
X (x) = pY (x), (6.132)

q̂ ′ (yi ) = p (yi ) , i = 1, 2 (6.133)

q̂ ′ (yi |xi ) = p (yi |xi ) , i = 1, 2. (6.134)
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Note that q̂ ′
Y ( y) = pY ( y) does not in general hold in M ′

S .
Although θ̂′Y

12 = 0 holds in q̂ ′(x, y), this does not mean that ŷ′
1 and ŷ′

2 are uncorre-
lated. When x1 and x2 are correlated, ŷ′

1 and ŷ′
2 are correlated even in the split model

M ′
S .
The measures G I and G I ′ are represented in terms of entropy and mutual infor-

mation as follows. Due to the Pythagorean theorem, we have, in the binary case,

DK L [p : p0] = −H [p] + c, (6.135)

DK L
[

p : q̂
] = D

[
p : q̂

] + D
[
q̂ : p0

]
, (6.136)

where H [p] is the entropy of p(x, y) and p0(x, y) is the uniform distribution of
which entropy is put equal to c. Therefore, we have

G I [p(x, y)] = DK L
[

p : q̂
] = H

[
q̂
] − H [p]. (6.137)

This holds in general, including the Gaussian case, where an independent distribution
p0(x, y) is used instead of the uniform p0. Similarly,

G I ′[p(x, y)] = H
[
q̂ ′] − H [p]. (6.138)

Since the entropy is decomposed as

H [p] = H [X ] + H [Y |X ], (6.139)

we have the following theorem, which is useful for calculating G I and G I ′.

Theorem 6.13 The two geometrical measures G I and G I ′ are given, in terms of
conditional entropy, as

G I [p(x, y)] = H
[
Ŷ |X

]
− H [Y |X ], (6.140)

G I ′[p(x, y)] = H
[
Ŷ ′|X

]
− H [Y |X ], (6.141)

where X, and Y denote the random variables x and y subject to p(x, y), and Ŷ and
Ŷ ′ denote the random variables y subject to q̂(x, y) and q̂ ′(x, y), respectively.

Moreover, we have simpler representations.

Theorem 6.14

G I [p] =
∑

H [Yi |Xi ] − H [Y |X ] − I
[
Ŷ1 : Ŷ2|X

]
, (6.142)

G I ′[p] =
∑

H [Yi |Xi ] − H [Y |X ], (6.143)
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where I
[
Ŷ1 : Ŷ2|X

]
is the conditional mutual information. This elucidates the rela-

tion between G I and G I ′ as follows:

G I [p] = G I ′[p] + DK L
[
q̂ : q̂ ′] , (6.144)

DK L
[
q̂ : q̂ ′] = H

[
Ŷ ′|X

]
− H

[
Ŷ |X

]
, (6.145)

G I [p] ≥ G I ′[p]. (6.146)

Theorem 6.15 G I satisfies the postulate (6.124) but G I ′ does not.

Proof Since both G I and G I ′ are given by the KL-divergence, they satisfy

G I ≥ G I ′ ≥ 0. (6.147)

Let us next consider the independent distribution

pind(x, y) = pX (x)pY ( y) (6.148)

derived from p(x, y). The mutual information is

I [X : Y ] = DK L
[

p(x, y) : pind(x, y)
]
. (6.149)

Since pind(x, y) satisfies θXY
12 = θXY

21 = 0, this is included in MS . So

G I ≤ I (X : Y ) (6.150)

since q̂ is the minimizer of divergence in MS . However, pind(x, y) does not neces-
sarily satisfy θY

12 = 0 and hence is not included in M ′
S in general. Hence,

G I ′ ≤ I (X : Y ) (6.151)

is not guaranteed. Indeed, for p(x, y) where X and Y are independent, I (X : Y ) = 0,
but if Y1 and Y2 are correlated

G I ′ > 0. (6.152)

�

We analyze the Gaussian system given in (6.119) for illustration.

Example 1 (Gaussian channel) The joint probability distribution of (x, y) in
(6.119) is

p(x, y) = exp

{
−1

2

(
xT x + ( y − Ax)T V−1 ( y − Ax) − ψ

)}
, (6.153)
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when x is subject to N (0, I). By putting

z =
(

x
y

)
, (6.154)

it is rewritten as

p(x, y) = exp

{
−1

2
zT Rz − ψ

}
, (6.155)

where R is the inverse of the covariance matrix

∑
= E

[
zzT

]
, (6.156)

and they are given explicitly as functions of the system parameters A and V.

A full model p(x, y) belongs to an exponential family, where the θ-coordinates
are R and η-coordinates are

∑
. A split model is given by

q(x, y) = exp
{∑ (

θX
i xi + θY

i yi
) + θX

12x1x2 + θY
12 y1 y2 +

∑
θXY

ii xi yi − ψ
}

,

(6.157)
which does not include terms θXY

i j xi y j (i �= j). By using this expression, we obtain
q̂(x, y) from p(x, y).

However, there is a serious problem concerning the optimal solution. The solution
can be written as

ŷ = Âx + ε̂, (6.158)

but Â is not diagonal. The solution is split in the sense that θXY
i j = 0 (i �= j) is

satisfied and its graph does not have diagonal branches, but not split in the sense that
Â is not diagonal. Hence, E [yi |x] depends on both x1 and x2. This does not happen
in M ′

S , since E [yi |x] = E [yi |xi ] holds.
In order to overcome this flaw, we introduce the third model of split systems,

M ′′
S = {

q(x, y)
∣∣q (

xi , y j |x j
) = q

(
xi |x j

)
q

(
y j |x j

)
, i = 1, 2, j �= i

}
(6.159)

This condition can be written as the Markov conditions

X1 → X2 → Y2, X2 → X1 → Y1, (6.160)

that is, Xi and Y j (i �= j) are conditionally independent when X j is fixed,

I (X1 : Y2|X2) = I (X2 : Y1|X1) = 0. (6.161)

Since M ′′
S includes pX (x)pY ( y), G I ′′ satisfies the postulate

0 ≤ G I ′′ ≤ I (X : Y ). (6.162)
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However, M ′′
S ⊂ MF is neither e-flat nor m-flat. It is curved, so we need to study its

properties carefully. This remains as a problem for our future study (Oizumi et al.
2016).

Before finishing this subsection, we show an example in the binary case.

Example 2 (Binary channel) We consider two binary transmission channels. One
is C1(ε), in which yi chooses xi with probability 1 − ε and chooses x j (i �= i)
with probability ε. Once x1 or x2 is chosen by y1, the transmission of x1 (x2) to y1

is through a binary symmetric channel with error probability ν. This means that,
when x1 = 1, the probability of y1 = 1 is 1 − ν and that of y1 = 0 is ν. The other
cases are similarly defined. We further consider another channel C2 which generates
z = (0, 0), (1, 1) with probability 1/2 each, and its output is y = z irrespective of
x. So no information transmission takes place in C2. We study a combined binary
channel C that chooses C1 with probability 1 − δ and chooses C2 with probability
δ. The split model MS is defined by ε = 0, and ν is not necessarily 0. ν plays the
role of correlated ε in the Gaussian case. The split model M ′

S is defined by ε = 0
and δ = 0.

Remark 1 We can introduce a hierarchy of split models in a general channel having
n input terminals and n output terminals. We partition k inputs x1, . . . , xn into k
subsets X1, . . . , Xk ,

∪ Xi = {x1, . . . , xn} , Xi ∩ X j = ∅. (6.163)

Similarly, we partition y into Y1, . . . , Yk . The split model MS with respect to this
partition is obtained by deleting all the branches connecting terminals in Xi and
Y j (i �= j). Since a refinement of a partition gives a finer partition, we have a
hierarchical structure concerning partitions. Hence, G I forms a hierarchical structure
with respect to partitions.

Remark 2 We can extend the above results to the dynamical systems of Markov
chains, such that the state xt+1 at time t + 1 is determined stochastically by a con-
ditional probability distribution p (xt+1|xt ) of a stochastic channel. The initial state
distribution p (x0) is set equal to the stationary distribution of the Markov chain.

6.10 Input–Output Analysis in Economics

We show another example of the dual foliation from the field of economics, due
to Morioka and Tsuda (2011). The input–output analysis uses a table A, which is
an n × n matrix, showing the quantities of products and amounts of consumption
in n industries and how the products are transferred from one industry to another
for consumption. Namely, each row and column of matrix A = (

Ai j
)

represent an
industry and Ai j is the amount of product that industry i sells to industry j . Ai j are
represented in the monetary basis.
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Let

Ai · =
n∑

j=1

Ai j (6.164)

be the row sum of the table, which represents the quantity of gross product of industry
i . Similarly, the column sum

A· j =
n∑

i=1

Ai j (6.165)

represents the amount of gross consumption of industry j . They satisfy

A·· =
∑

i

Ai · =
∑

A· j . (6.166)

We have an interest not merely in the gross product and consumption of each industry
but more in their interactions, reflecting the structural relationship between industries.

To this end, let us consider the manifold M consisting of all input–output tables

M = {A} , (6.167)

where Ai j form a coordinate system of M . We define another coordinate system by

Li j = log Ai j , L = (
Li j

)
(6.168)

and regard it as an e-flat coordinate system of M . The associated convex function is

ψ(L) =
∑

i j

exp
{

Li j
}
. (6.169)

Then, the dual m-coordinate system is given by ∇ψ(L) which is merely

A = (
Ai j

)
(6.170)

and the dual convex function is

ϕ(A) =
∑
i, j

(
Ai j log Ai j − Ai j

)
. (6.171)

The canonical divergence between two input–output tables A and B is

D[A : B] =
∑{

Bi j log
Bi j

Ai j
−

∑
Bi j +

∑
Ai j

}
. (6.172)
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In order to separate the distributions of gross products and consumptions from their
interrelations, we treat Ai · and A· j as a part of new m-affine coordinates, which
are linear combinations of m-coordinates Ai j . We replace the last row Ani and last
column A jn by Ai · and A· j , respectively. Then we have a modified table in which
the last row and column are replaced. We denote the new coordinates by Ãi j . This
is given by an affine coordinate transformation from A. The corresponding e-affine
coordinates, denoted by L̃ i j are calculated from the invariance relation

∑
Ai j Li j =

∑
Ãi j L̃ i j (6.173)

as

L̃ i j = Li j − Lin − Lnj + Lnn = log
Ai j Ann

Ain Anj
, i, j = 1, . . . , n − 1, (6.174)

L̃ in = Lin − Lnn, L̃n j = Lnj − Lnn, L̃nn = Lnn. (6.175)

We partition the coordinates and construct the mixed coordinates. The first
part consists of

(
Ai ·, A· j , A··

)
, i, j = 1, . . . , n − 1. The second part consists of

L̃ i j , i, j = 1, . . . , n − 1. The first m-coordinates represent the gross products and
consumptions in industries, while the second part is orthogonal to the first part, rep-
resenting the interrelations among industries. The divergence between two tables
can be decomposed into a sum, the one due to the difference of gross products and
consumptions and the second due to the difference in the interrelations.

The L̃ i j are obtained by deleting industry n from the table. Hence, it is not sym-
metric with respect to all the industries. To overcome this difficulty, let L̃(k)

i j be the
e-coordinates where industry k is replaced, instead of industry n, by the total sums.
Then, their average defined by

L̃∗
i j = 1

n

n∑
k=1

L̃(k)
i j (6.176)

would be a good measure of interactions among industries.
Instead of replacing one industry k by the gross distributions, we may add(

Ai ·, A· j , A··
)

to the input–output table as its (n + 1)th row and (n + 1)th column.
Then, the interaction part based on the (n + 1)th row and column becomes

Si j = log
Ai j

Ai · A· j
. (6.177)

Morioka and Tsuda (2011) used this for analysis.
Observing the trend of yearly changes in the first part of

(
Ai ·, A· j

)
, one can

understand the developments of the gross products in industries. The yearly changes
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of the second part L̃ i j represent how the industrial interrelationship changes. This
reflects the structural change in the interrelations among industries.

One can try to alter the gross amounts of products of industries from Ai · to

Āi · = μi Ai · (6.178)

by using arbitrary coefficients μ1, . . . ,μn . By using another set of coefficients
λ1, . . . ,λn , the gross consumptions are changed to

Ā· j = λ j A· j . (6.179)

Such changes can be realized by transforming Ai j into

Āi j = μiλ j Ai j . (6.180)

This is called the RAS transformation, by which the interrelationship L̃ i j does not
change but the gross amounts of products and consumptions may change arbitrarily.

Annual statistics of gross amounts Ai · and A j · are published every year, but Ai j

themselves are not, because construction of the entire Ai j table is laborious. So,
the entire table is published only every five years in Japan, for example. In such a
case, we can interpolate the L̃ i j part (or Si j part) in the unknown years by using
the e-geodesic in the interaction part from the known S-parts. Morioka and Tsuda
(2011) studied the change in the industrial structure of Japan after the War, finding
remarkable changes occurring as the Japanese economy developed.

See Marriott and Salmon (2011) for other applications of geometry to economics.

Remarks

The concept of dual affine connections was introduced in a Riemannian manifold
by Amari (1982) and Nagaoka and Amari (1982). See also Amari and Nagaoka
(2000). The idea emerged from the invariant geometry of a manifold of probability
distributions due to Chentsov (1972). However, the late professor K. Nomizu stated
that such a concept exists in affine differential geometry (Nomizu and Sasaki 1994).

Affine differential geometry studies properties of n-dimensional hypersurfaces
embedded in an (n + 1)-dimensional affine space. This was originally developed by
W. Blaschke and also developed by J. L. Koszul (see Nomizu and Sasaki 1994). The
Hessian manifold of Shima (2007) also deals with a dually flat manifold.

The concept of dual (conjugate) affine connections is naturally introduced in
affine differential geometry but it has not played a central role. The concept of dual
connections in information geometry is more general, since it deals with a manifold
which might not be embedded in an (n+1)-dimensional affine space. However, there
is much overlap between these two fields and they have been developping through
mutual interactions. The present monograph does not touch upon affine differential
geometry, although there are many common interesting problems. Excellent work
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is found in Kurose (1990, 1994, 2002). See also Matsuzoe (1998, 1999), Matsuzoe
et al. (2006), Uohashi (2002) and many others.

lnvariant geometry is due to Chentsov (1972), where the uniqueness of two tensors
G and T is presented. The invariant geometry (α-geometry) is constructed from these
tensors. How is a general dual manifold related to a statistical manifold? Due to a
theorem of Banerjee et al. (2005), we know that any dually flat manifold is realized
as an exponential family. Lê (2005) proved a stronger theorem that any dual manifold
can be realized as a submanifold of an N -dimensional probability simplex SN for
a sufficiently large N . There is another interesting problem: Given a Riemannian
manifold {M, G}, on what condition does it become dually flat by supplementing an
adequate T ? Such a Riemannian manifold is said to be flattenable. It is interesting to
know the characterization of flattenable Riemannian manifolds. When n = 2, this is
always possible, but when n > 2, it is not. This problem was studied by Amari and
Armstrong (2014).

The Chentsov invariance theorem was proved in the discrete case of Sn . Amari and
Nagaoka (2000) formulated the invariance in a general continuous case in terms of
sufficient statistics. However, there is no rigorous proof due to difficulties in dealing
with a function space. The Leipzig group, including J. Jost and H. V. Lê, is tackling
this problem (Ay et al. 2013).

The global topology of a statistical manifold is another interesting problem of
differential geometry. It is interesting to see how a dual pair of local curvatures is
related to the global topology of a manifold.

Finally, we give a list of monographs on information geometry. They each have the
own characteristics: Amari (1985), Amari and Nagaoka (2000), Arwini and Dodson
(2008), Calin and Udriste (2013), Chentsov (1972), Kass and Vos (1997), Murray
and Rice (1993).
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Chapter 7
Asymptotic Theory of Statistical Inference

7.1 Estimation

Let M = {p(x, ξ)} be a statistical model specified by parameter ξ, which is to
be estimated. When we observe N independent data D = {x1, . . . , xN } generated
from p(x, ξ), we want to know the underlying parameter ξ. This is a problem of
estimation, and an estimator

ξ̂ = f (x1, . . . , xN ) (7.1)

is a function of D. The estimation error is given by

e = ξ̂ − ξ, (7.2)

when ξ is the true value. The bias of the estimator is defined by

b(ξ) = E
[
ξ̂
]

− ξ, (7.3)

where the expectation is taken with respect to p(x, ξ). An estimator is unbiased
when b(ξ) = 0.

The asymptotic theory studies the behavior of an estimator when N is large. When
the bias satisfies

lim
N→∞b(ξ) = 0, (7.4)

it is asymptotically unbiased.
It is expected that a good estimator converges to the true parameter as N tends to

infinity. It is written as
lim

N→∞ξ̂ = ξ. (7.5)
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When this holds, an estimator is consistent. The accuracy of an estimator is measured
by the error covariance matrix, V = (

Vi j
)
,

Vi j = E
[(

ξ̂i − ξi

) (
ξ̂ j − ξ j

)]
. (7.6)

It decreases in general in proportion to 1/N , so that the estimator ξ̂ becomes suf-
ficiently accurate as N increases. The well-known Cramér–Rao Theorem gives a
bound of accuracy.

Theorem 7.1 For an asymptotically unbiased estimator ξ̂, the following inequality
holds:

V ≥ 1

N
G−1, (7.7)

E
[(

ξ̂i − ξi

) (
ξ̂ j − ξ j

)]
≥ 1

N
gi j , (7.8)

where G = (
gi j

)
is the Fisher information matrix, G−1 = (

gi j
)

is its inverse, and
the matrix inequality implies that V − G−1/N is positive semi-definite.

The maximum likelihood estimator (MLE) is the maximizer of the likelihood,

ξ̂MLE = arg max
ξ

N∏
i=1

p (xi , ξ) . (7.9)

It is known that the MLE is asymptotically unbiased and its error covariance satisfies

VMLE = 1

N
G−1 + O

(
1

N 2

)
, (7.10)

attaining the Cramér–Rao bound (7.7) asymptotically. Such an estimator is said to
be Fisher efficient (first-order efficient).

Remark We do not mention Bayes estimators, where a prior distribution of para-
meters is used. However, when the prior distribution is uniform, the MLE is the
maximum a posteriori Bayes estimator. Moreover, it has the same asymptotic prop-
erties for any regular Bayes prior. Information geometry of Bayes statistics will be
touched upon in a later chapter.

7.2 Estimation in Exponential Family

An exponential family is a model having excellent properties such as dual flatness.
We begin with an exponential family
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p(x,θ) = exp {θ · x − ψ(θ)} (7.11)

to study the statistical theory of estimation, because it is simple and transparent.
Given data D, their joint probability distribution is written as

p(D,θ) = exp [N {(θ · x̄) − ψ(θ)}] , (7.12)

where x̄ is the arithmetic mean of the observed examples,

x̄ = 1

N

N∑
i=1

xi . (7.13)

It is a sufficient statistic. The MLE θ̂MLE is given by differentiating (7.12) and is the
solution to

η = ∇ψ(θ) = x̄. (7.14)

Using the η-coordinates, this is written as

η̂MLE = x̄. (7.15)

Observed data defines a point η̄ in M of which the coordinates are

η̄ = x̄. (7.16)

We call it the observed point determined from data D, which is nothing other than
the MLE in the η-coordinates. The following theorem is easy to prove.

Theorem 7.2 The MLE is unbiased and efficient:

E
[
η̂MLE

] = η, (7.17)

V = 1

N
G−1. (7.18)

Proof We see from the central limit theorem that η̄ is asymptotically subject to a
Gaussian distribution with mean η and covariance matrix G−1/N . Since the MLE
attains the Cramér–Rao bound, it is the best estimator in an exponential family. �

Remark The MLE θ̂MLE expressed in the θ-coordinates is asymptotically unbiased
and asymptotically efficient, but it is not exactly unbiased, nor does it attain the
Cramér–Rao bound exactly. This is because the bias and covariance matrix are not
tensors so that the results are different in the θ-coordinate system.
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7.3 Estimation in Curved Exponential Family

Estimation in an exponential family is too simple. We study estimation in a curved
exponential family, which is a submanifold embedded in an exponential family. Many
statistical models belong to this class. A curved exponential family of probability
distributions with parameter u is written in the following form:

p(x, u) = exp [θ(u) · x − ψ {θ(u)}] . (7.19)

S = {p(x, u)} is a submanifold of an exponential family M = {p(x,θ)}, where u
is a coordinate system of S.

Observed data D specifies the observed point η̄ = x̄ in the ambient exponential
family M , which is not included in S in general. An estimated value of u is derived
by mapping the observed point η̄ to S (Fig. 7.1). That is, an estimator û is derived
from a mapping from M to S. Let it be

f : M → S (7.20)

such that
û = f (η̄) . (7.21)

The observed point η̄ converges to the true point as N goes to infinity, as is clear
from the law of large numbers. Hence, a consistent estimator satisfies

lim
N→∞û = f {η(u)} . (7.22)

Let us consider the set of points η in M which are mapped to u by the estimator
f (η). This is the inverse image of an estimator f , denoted by

A(u) = f −1(u) = {η ∈ M | f (η) = u } . (7.23)

Fig. 7.1 An estimator
f : η → η = f (η) defines
auxiliary submanifold
A(u) = f −1(u)
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It forms an (n − m)-dimensional submanifold passing through η(u) ∈ M (Fig. 7.1).
We call it an ancillary submanifold associated with estimator f . A(u) is defined at
each u ∈ S and they give a foliation of M at least in a neighborhood of S,

A(u)
⋂

A
(
u′) = ∅, u 	= u′, (7.24)

⋃
u

A(u) ⊃ U, (7.25)

where U is a neighborhood of S. When A(u) � η(u), that is, when A(u) passes
through η(u), A(u) gives a consistent estimator.

An estimator defines an ancillary family A = {A(u)} associated with it and
conversely an ancillary family A defines a consistent estimator when f satisfies
(7.22). It is possible to study the performance of an estimator in terms of the geometry
of an ancillary family. Let us define a coordinate system v inside each A(u) such
that the origin v = 0 is at η(u) which is the intersection of A(u) and S. We denote
coordinates of S by

u = (
ua

)
, a = 1, . . . , m (7.26)

and coordinates in A(u) by

v = (vκ) , κ = m + 1, . . . , n. (7.27)

Then, combining the two, we have a new coordinate system of M ,

w = (u, v) = (wα) , α = 1, 2, . . . , n, (7.28)

defined in a neighborhood U ⊂ S (Fig. 7.2).

Fig. 7.2 New coordinate
system w = (u, v) of M
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The θ-coordinates and η-coordinates in M are written in terms of the new coor-
dinates w as

θ = θ(w) = θ (u, v) , (7.29)

η = η(w) = η(u, v). (7.30)

Any point in S satisfies v = 0, so that S is represented by

S = {η(u, v) |v = 0 } . (7.31)

The Jacobian matrices of the coordinate transformations between w and θ and w

and η are expressed as

Bi
α = ∂θi

∂wα
, (7.32)

Bαi = ∂ηi

∂wα
, (7.33)

and are decomposed as

Bi
a = ∂θi

∂ua
, Bi

κ = ∂θi

∂vκ
; (7.34)

Bai = ∂ηi

∂ua
, Bκi = ∂ηi

∂vκ
(7.35)

in terms of the u and v coordinates.
The Fisher information is given in the w-coordinate system as

gαβ = Bi
αgi j B j

β (7.36)

and is decomposed as

G =
[

gab gaλ

gκb gκλ

]
. (7.37)

Given data D, the u- and v-coordinates (ū, v̄) of the observed point η̄ are deter-
mined from

η̄ = η (ū, v̄) . (7.38)

The estimator associated with ancillary family A is given by

û = ū. (7.39)
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7.4 First-Order Asymptotic Theory of Estimation

When the true distribution is u in S, by the law of large numbers, the observed point
η̄ converges to

η = η(u, 0), (7.40)

as N tends to infinity. We define the error, that is the deviation of the observed point
from the true distribution in the η-coordinates, by

e = η̄ − η. (7.41)

Since it is small, we normalize it as

ẽ = √
N e. (7.42)

Then, the moments of the error are easily calculated. They are summarized in the
following theorem.

Theorem 7.3 The moments of the error (deviation) ẽ in the η-coordinates are given
by

E
[
ẽi

] = 0, (7.43)

E
[
ẽi ẽ j

] = gi j , (7.44)

E
[
ẽi ẽ j ẽk

] = 1√
N

Ti jk, (7.45)

where

gi j = ∂i∂ jψ(θ), (7.46)

Ti jk = ∂i∂ j∂kψ(θ). (7.47)

Let us also normalize the error in the w-coordinates as

w̃ = √
N (w̄ − w) , (7.48)

where w̄ is the w-coordinates of η̄. By expanding

x̄ = η

(
w + w̃√

N

)
, (7.49)

we have

x̄i = ηi + 1√
N

Bαi w̃
α + 1

2N
Bαβi w̃

αw̃β + O

(
1

N
√

N

)
, (7.50)
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where

Bαβi = ∂2ηi

∂wα∂wβ
. (7.51)

By inverting (7.50), we have

w̃α = gαβ Bi
β ẽi − 1

2
√

N
Cβγ

αw̃βw̃γ, (7.52)

where
Cβγ

α = Bαi Bβγi . (7.53)

We have, therefore, an asymptotic evaluation of the error in the w-coordinates as

E
[
w̃α

] = − 1

2
√

N
Cβγ

αgβγ, (7.54)

E
[
w̃αw̃β

] = gαβ . (7.55)

Since ẽ = √
N (x̄ − η) are asymptotically Gaussian, the error w̃ = (ũ, ṽ) in (7.48)

expressed in the w-coordinates is asymptotically

p (ũ, ṽ) = c exp

{
−1

2
gαβw̃αw̃β

}
. (7.56)

By integrating p (ũ, ṽ) with respect to ṽ, we have the asymptotic distribution of the
estimation error

p (ũ) = c exp

{
−1

2
ḡabũaũb

}
, (7.57)

where
ḡab = gab − gaκgbλg

κλ. (7.58)

When A(u) is orthogonal to M ,

gaκ = Bi
agi j B j

κ = 0, (7.59)

so that we have

p (ũ) = c exp

{
−1

2
gabũaũb

}
. (7.60)

In general
(ḡab) ≤ (gab) (7.61)

and (ḡab) is maximized in the orthogonal case, where the Cramér–Rao bound is
asymptotically attained. An estimator is efficient in this case.
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We summarize the results in the following.

Theorem 7.4 (1) An estimator û is consistent when its ancillary family A(u) passes
through w = (u, 0) ∈ S in M. (2) A consistent estimator is efficient when A(u) is
orthogonal to S.

The maximum likelihood estimator is given by the m-projection of η̄ to S. There-
fore, its A(u) is orthogonal to S and it is efficient.

Remark The first-order asymptotic theory is a linear theory in a small neighborhood
of the true distribution. Hence, it is enough to consider only the tangent space Tη

instead of the entire M for evaluating the performance of an estimator. Therefore, the
asymptotic theory is common for all regular statistical models. We may consider the
case where the ancillary family A(u) depends on N so that it is denoted as AN (u).
Then, the theory holds when AN (u) passes through (u, 0) and is orthogonal to S, as N
tends to infinity. Such an ancillary family is important for studying the performance
of testing hypotheses.

7.5 Higher-Order Asymptotic Theory of Estimation

The covariance matrix of an efficient estimator achieves the CR-bound G−1/N
asymptotically when we ignore the term of order 1/N 2. The higher-order asymp-
totic theory evaluates this higher-order term. This makes it possible to compare the
performances of various efficient estimators more accurately.

In order to compare the higher-order errors, we introduce asymptotic bias-
correction of estimators. The asymptotic bias b of an estimator is given in (7.54),
which is of the order 1/N . If we modify the estimator by

û∗ = û − b
(
û
)
, (7.62)

the bias of the new estimator becomes

E
[
û∗] − u = O

(
1

N 2

)
. (7.63)

We call it a bias-corrected estimator. In order to compare the covariances of various
efficient estimators, we use their bias-corrected versions. The idea of bias correction
is due to Rao (1962), and is necessary in order to exclude estimators which are good
at some specific points but not uniformly good. For example, the trivial estimator

û = u0 (7.64)

which does not depend on data D, is the best estimator when the true distribution is
u0 but very bad for other u.
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We evaluate the error terms from (7.52) by using the higher-order terms of the
Taylor expansion, where we need higher-order moments of the error given in (7.43)–
(7.45). We then have the following theorem. The calculations are technical and they
are formidably complicated, so we neglect them and give only the results. See Amari
(1985).

Theorem 7.5 The covariance matrix of a bias-corrected efficient estimator is given
by

E
[
ũ∗aũ∗b

]

= gab + 1

2N

{(
Γ m2

S

)ab + 2
(
H e2

S

)ab + (
H m2

A

)ab
}

+ O

(
1

N 2

)
, (7.65)

where (
H e2

S

)ab = H (e)κ
ec H (e)λ

f d gcdgκλg
aeg f b (7.66)

is the square of the e-embedding curvature of S,

(
H m2

A

)ab = H (m)a
κλ H (m)b

μν gκμgλν (7.67)

is the square of the m-embedding curvature of the ancillary family A(u) and

(
Γ m2

S

)ab = Γ
(m)a

cd Γ
(m)b

e f gcegd f (7.68)

is the square of the m-connection of the coordinate system u in S.

Thus, the second-order terms of the covariance of error are decomposed into
a sum of three non-negative terms. The e-curvature term

(
H e

S
2
)ab

depends on the
statistical model S, showing the degree of its deviation from an exponential family.
This vanishes when S itself is an exponential family. This term was introduced by
Efron (1975) and he named it statistical curvature. The term

(
Γ m2

S

)ab
depends on the

method of parameterization u in S and is common to all estimators. The m-curvature
term

(
H m

A
2
)ab

depends on the m-embedding curvature of A(u). It vanishes when the
m-curvature of A(u) vanishes. Note that the m-curvature of A(u) vanishes for the
MLE, since the MLE is given by the m-projection of the observed point to S. This
is the only quantity which depends on the estimator.

Theorem 7.6 A bias-corrected efficient estimator is second-order efficient when the
embedding m-curvature of the associated A(u) vanishes at S. The bias-corrected
MLE is second-order efficient.

Remark It is intriguing to ask if the higher-order bias-corrected MLE is third-order
efficient or not. Unfortunately, it is not. Kano (1997, 1998) disproved the conjecture,
showing that the MLE is not third-order efficient. It was Fisher’s belief that the MLE
would be the best estimator, but the dream of Fisher was shattered in the third-order
asymptotic theory.
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7.6 Asymptotic Theory of Hypothesis Testing

When the number of observations is large, we have an asymptotic theory of hypothesis
testing. A typical situation is to test a null hypothesis

H0 : u = u0 (7.69)

against alternatives
H : u > u0 (7.70)

in a one-dimensional curved exponential family S = {p(x,θ(u))}. This is a one-
sided test but we can treat a two-sided test similarly.

Since S is a curve in M , we design a test by defining a rejection region R in M
such that hypothesis H0 is rejected when the observed point η̄ is included in R and
is not rejected (is accepted) otherwise. The observed point η̄ converges to u0 as N
increases when hypothesis H0 is true. Hence, the rejection region should not include
u0, but its boundary B = ∂R lies close to u0, approaching u0 as N tends to infinity.
See Fig. 7.3. The boundary surface B (u0) of R depends on the null hypothesis u0.
It is an (n − 1)-dimensional hypersurface crossing S at point u′

0 which converges to
u0 as N increases. We denote it by AN (u0). See Fig. 7.3.

We consider u = u0 as a free scalar parameter, and form an ancillary family of A =
{AN (u)}, depending on N . This is a foliation of M consisting of the boundaries of
the rejection regions for various u = u0. This is useful for analyzing the performance
of a hypothesis testing. The first-order asymptotic theory is easy, since η̄ converges
to η (u0) under hypothesis H0.

Theorem 7.7 A test is (first-order) efficient when the associated ancillary surface
AN (u) passing through uN is orthogonal to S and uN converges to u0, as N tends
to infinity.

Fig. 7.3 Rejection region R
and associated auxiliary
submanifold AN (u0)
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There are many first-order efficient tests, the Rao test, Wald test, likelihood-ratio
test, locally most powerful test among others. How do these tests differ in their
performance? The question is answered by studying the power functions of test
T , the probabilities PT (u) of rejecting H0 when the true distribution is u, up to
the higher order. There are no uniformly most powerful tests in the second order
except for the case that S is an exponential family. Therefore, one test is powerful
at a specific point, while another is good at a different point. Information geometry
characterizes the performances of various tests by the geometry of the associated
ancillary surfaces, in particular by the m-embedding curvatures of AN (u) and the
asymptotic angle between AN (u) and S. The second-order power functions of various
tests are analyzed in Kumon and Amari (1983), Amari (1985). See also Amari and
Nagaoka (2000).

Remarks

Information geometry was developed for elucidating higher-order characteristics
of statistical inference, in particular, estimation and hypothesis testing. The first-
order theory was established by the Cramér–Rao theory and the Neyman–Pearson
fundamental lemma. Researchers tackled the second-order theories in the late 1970s
and many results were obtained independently in Japan, Germany, India, Russia and
the U.S.A. See Akahira and Takeuchi (1981). B. Efron was the first to point out the
role of statistical curvature in the second-order asymptotic theory (Efron 1975).

Amari (1982) established the second-order theory of estimation by using differ-
ential geometry. Kumon and Amari (1983) extended it to the higher-order theory
of hypothesis testing. Information geometry was developed further for this purpose,
while the duality theory was established by Nagaoka and Amari (1982). See also
Amari and Nagaoka (2000).

Sir David Cox, one of most influential statisticians, paid attention to differential
geometrical theory when he visited Japan, and he organized a Workshop on Differ-
ential Geometry of Statistics in London in 1984. Numerous active statisticians, C.R.
Rao, B. Efron, A.P. Dawid, R. Kass, N. Read, O.E. Barndorff-Nielsen, S. Lauritzen,
D.V. Hinkley, S. Eguchi and many others, participated in the workshop. It was very
fortunate for information geometry that the topic was discussed openly at this work-
shop in its period of early infancy. But it was unfortunate that N.N. Chentsov could
not participate, because it was supported by NATO and the world was divided by the
Iron Curtain at that time.

We have shown in this chapter the asymptotic theory of statistics in the framework
of a curved exponential family. We have not described details, but shown only intuitive
ideas and results. The details are shown in Amari (1985) and also in Amari and
Nagaoka (2000) or related journal papers. Since not all regular statistical models are
curved exponential families, one might wonder if the theory is valid in a more general
regular statistical model. We can prove that most results of higher-order statistical
theory hold in a general regular statistical model, by forming a fiber bundle-like
structure attached to S, consisting of higher-order derivatives of the score function.
This is called a local exponential family. See Amari (1985) for details of higher-order
asymptotic theory.
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How about non-regular statistical models, where the Fisher information matrix
is degenerate or not defined (diverging to infinity)? In the former case, a statistical
model includes singularities. There are many such models. Typical examples include
the multilayer perceptron. We will study such models in Part IV.

A simple example of the latter type is the location model where x is uniformly
distributed in the interval of [u − 0.5, u + 0.5] and u is the unknown parameter. The
Fisher information matrix diverges to infinity. In such a statistical model, there is no
inner product in the tangent space. The metric is given by a Minkowski metric in the
tangent space, which is different from a Riemannian manifold. In this case, M is a
Finsler space. An estimator is not asymptotically Gaussian in such a model but is
subject to a stable distribution. It is interesting to see the relation between the Finsler
metric, stable distribution, and associated fractal structure, comparing them with the
Riemannian metric, the Gaussian distribution due to the Central Limit Theorem and
the smooth structure of the regular case. However, such a theory has not yet been
explored. See a preliminary study by Amari (1984, in Japanese).



Chapter 8
Estimation in the Presence of Hidden
Variables

8.1 EM Algorithm

8.1.1 Statistical Model with Hidden Variables

Let us consider a statistical model M = {p(x, ξ)}, where vector random variable x
is divided into two parts x = (y, h) so that p(x, ξ) = p( y, h; ξ). When x is not
fully observed but y is observed, h is called a hidden variable. In such a case, we
estimate ξ from observed y. These situations occur in many applications. One can
eliminate the hidden variable h by marginalization such that

pY ( y, ξ) =
∫

p( y, h; ξ)dh. (8.1)

Then, we have a statistical model M ′ = {pY ( y, ξ)} which does not include hidden
variables. However, in many cases, the form of p(x, ξ) is simple and estimation
is tractable in M , but M ′ is complicated because of integration or summation over
h. Estimation in such a model is computationally intractable. Typically, M is an
exponential family. The EM algorithm is a procedure to estimate ξ by using a large
model M from which model M ′ is derived.

Let us consider a larger model

S = {q( y, h)} (8.2)

consisting of all probability density functions of ( y, h). When both y and h are binary
variables, S is a probability simplex so that it is an exponential family. We study
the continuous variable case similarly, without considering delicate mathematical
problems. Model M is included in S as a submanifold. Observed data give an observed
point

q̄(x) = 1

N

∑
δ (x − xi ) (8.3)

© Springer Japan 2016
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in S when examples x1, . . . , xN are fully observed. This is the empirical distribution.
When S is an exponential family, it is given by the sufficient statistic

η̄ = x̄ = 1

N

∑
xi (8.4)

in the η-coordinates. The MLE is given by m-projecting q̄(x) to M .
We do not have a full observed point q̄(x) in the hidden variable case. We observe

only y so that we have an empirical distribution q̄Y ( y) of y only. In order to have a
candidate of a joint distribution q̄( y, h), we use an arbitrary conditional distribution
q(h| y) and put

q̄( y, h) = q̄Y ( y)q(h| y). (8.5)

Since q(h| y) is arbitrary, we take all of them as possible candidates of observed
points and consider a submanifold

D = {q̄( y, h) |q̄( y, h) = q̄Y ( y)q(h| y), q(h| y) is arbitrary} . (8.6)

This is the observed submanifold in S specified by the partially observed data
y1, . . . , yN . By using the empirical distribution, it is written as

q ( y, h) = 1

N

∑
δ
(

y − yi

)
q

(
h

∣∣yi

)
(8.7)

The data submanifold D is m-flat, because it is linear with respect to q(h| y).
Before analyzing the estimation procedure, we give two simple examples of the

hidden variable model.

(1) Gaussian mixture model
Let N (μ) be a Gaussian distribution of y with mean μ and variance 1. We can treat
more general multivariate Gaussian models with unknown covariance matrices in a
similar way, but this simple model is enough for the purpose of illustration. The
Gaussian mixture model consists of the mixture of k Gaussian distributions having
different means μ1, . . . ,μk ,

p(y, ξ) = 1√
2π

∑
w j exp

{
−

(
y − μ j

)2

2

}
, (8.8)

where ξ = (w1, . . . , wk; μ1, . . . ,μk),
∑

wi = 1, are unknown parameters to be
estimated. Estimation is easy if, for each y1, . . . , yN , we know the Gaussian distri-
bution from which this yi is generated. So we introduce a hidden variable h, which
takes value i when y is generated from the i th distribution N (μi ). The h is a random
variable, the distribution of which is multinomial, taking value i with probability wi .
Hence, the entire joint distribution is
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p(y, h, ξ) = wh√
2π

exp

{
−1

2
(y − μh)

2

}
, h = 1, . . . , k (8.9)

and (8.8) is the marginal distribution of (8.9), obtained by summing h from 1 to k.

(2) Boltzmann machine with hidden units
The Boltzmann machine is a stochastic model having a binary vector random variable
x = (x1, . . . , xn). It originates from a model of a spin system in physics and a model
of associative memory in machine learning. Consider a Markov chain {x1, x2, . . .},
where state xt+1 at time t + 1 is stochastically determined from xt . We do not
describe here the stochastic dynamics of the state transition, but simply study its
stable distribution given by

p(x, a, W) = exp

{
a · x − 1

2
xT Wx − ψ(a, W)

}
. (8.10)

This is called a Boltzmann machine specified by parameter ξ = (W, a), where an
element wi j of matrix W is regarded as the intensity of connection between units i
and j . They are assumed to be symmetric wi j = w j i with wi i = 0. The linear term
a · x in the exponent is called a bias term, which specifies the tendency of xi to be 1
rather than 0.

We consider the case where x is divided into two parts, x = ( y, h) and y is
observable while h is hidden. For the sake of simplicity, we consider the restricted
Boltzmann machine (RBM), which consists of two layers, an observable layer and a
hidden layer (Fig. 8.1). Connections exist only between units in the observable layer
and between units in the hidden layer. No connections exist between units within
the observable layer, and no connections exist between units within the hidden layer.
Then, the stable distribution is written as

p( y, h, W) = exp

{
−1

2
yT Wh − ψ(W)

}
, (8.11)

where, for the sake of simplicity, we ignore the bias term a and let it be 0.

Fig. 8.1 Restricted
Boltzmann machine
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The marginal distribution of y is

pY ( y, W) =
∑

h

exp

{
−1

2
yT Wh − ψ(W)

}
, (8.12)

which is a mixture of exponential family distributions. The conditional distribution
of h given y is

p(h| y; W) = p( y, h; W)

pY ( y, W)
, (8.13)

when the parameters W are known. This model is used in deep learning and we
discuss it in a later chapter from the viewpoint of Bayesian information geometry.

8.1.2 Minimizing Divergence Between Model Manifold
and Data Manifold

The MLE is the minimizer of KL-divergence from the observed point q̄ to the model
manifold in the fully observed case. We have an observed data submanifold D in the
hidden case instead of q̄ . We consider the minimizer of KL-divergence from the data
manifold to the model manifold. The problem is then to minimize the divergence
between two submanifolds D and M ,

DK L [D : M] = min
∫

q̄Y ( y)q(h| y) log
q̄Y ( y)q(h| y)

p( y, h, ξ)
d ydh, (8.14)

where the minimum between two sets D and M is taken with respect to q̄ ∈ D, p ∈
M . The alternating minimization algorithm (em algorithm) studied in Chap. 1 is
useful for this purpose.

Theorem 8.1 The MLE is the minimizer of the KL-divergence from D to M.

Proof The KL-divergence from a distribution q̄Y ( y)q(h| y) ∈ D to a distribution
p( y, h, ξ) ∈ M is written as

D
[
q̄Y ( y)q(h| y) : p( y, h, ξ)

] =
∫ [

q̄Y ( y)
∫

q(h| y) log q(h| y)dh

− q̄Y ( y)
∫

q(h| y) log p( y, h, ξ)dh
]
d y + c, (8.15)

where c is a term not depending on ξ and q(h| y). We minimize (8.15) with respect to
both ξ and q(h| y) alternately by the em algorithm, that is, the alternating use of the
e-projection and m-projection. First, assume that q(h| y) is given and we minimize
(8.15) with respect to ξ. We consider one observed y for simplicity, although we

http://dx.doi.org/10.1007/978-4-431-55978-8_1
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need to consider the expectation with respect to q̄Y ( y), which is the summation over
all observed yi .

Our task is to maximize the second term of (8.15)

L(ξ|q) =
∫

q(h| y) log p( y, h, ξ)dh (8.16)

with respect to ξ. By differentiating it, the solution is given in the equation

∫
q(h| y)

p(h| y, ξ)

∂

∂ξ
p( y, h, ξ)dh = 0. (8.17)

In order to minimize (8.15) with respect to q(h| y), we use the following lemma.

Lemma 8.1 The e-projection from a point of M to D does not alter the conditional
distribution q(h| y) and hence the conditional expectation of h.

Proof Given ξ and observed data y, we search for q(h| y) that minimizes (8.15).
This is to minimize

K L
[
q̄Y ( y)q(h| y) : p( y, h; ξ)

]
(8.18)

under the constraint ∫
q(h| y)dh = 1. (8.19)

The minimizer is given by the e-projection of p( y, h; ξ) to D and analytically by
solving ∫ [

log
q(h| y)

p(h| y, ξ)
− λ

]
δq(h| y)dh = 0, (8.20)

where λ is the Lagrange multiplier corresponding to (8.19). This proves

q(h| y) = p (h| y; ξ) , (8.21)

which is exactly the same as the conditional probability of h at ξ. �

By substituting (8.21) in (8.17), the minimizer of the KL-divergence satisfies

∂

∂ξ

∫
p( y, h, ξ)dh = ∂

∂ξ
pY ( y, ξ) = 0, (8.22)

proving that it is the MLE. �
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8.1.3 EM Algorithm

The EM algorithm (expectation maximization algorithm) is an iterative algorithm
for obtaining the MLE in a model including hidden variables. It was formulated by
Dempster et al. (1977). We show its geometry due to Csiszár and Tusnady (1984), also
by Amari et al. (1992), Byrne (1992) and Amari (1995). It is an application of the em
algorithm from the geometrical point of view. We begin withξ0 as an initial parameter,
and e-project it to D to obtain the conditional distribution q(h| y) = p

(
h

∣∣y; ξ0

)
.

This determines a candidate for the observed distribution in D. We calculate the
conditional expectation of log likelihood to evaluate the likelihood of a new candidate
ξ, given by

L
(
ξ, ξ0

) = 1

N

∑
i

∫
p

(
h| yi , ξ0

)
log p( yi , h, ξ)dh, (8.23)

for observed data y1, . . . , yN . This is called the E-step, because it calculates the
conditional expectation. This is the e-projection of p

(
y, R, ξ0

)
to D.

We then m-project the new candidate in D to M , to obtain a new candidate ξ1 in
M . This is obtained by maximizing (8.23). It is called the M-step, because it is the
maximization of the log likelihood (8.23). This is the m-projection. We repeat the
procedures. See Fig. 8.2 .

It is easy to prove the following theorem.

Theorem 8.2 The KL-divergence decreases monotonically by repeating the E-step
and the M-step. Hence, the algorithm converges to an equilibrium.

It should be noted that the m-projection is not necessarily unique unless M is
e-flat. Hence, there might exist local minima.

8.1.4 Example: Gaussian Mixture

The parameters to be estimated are the weights w1, . . . , wk and the means μ1, . . . ,μk

of component Gaussian distributions, ξ = (wi ,μi ; i = 1, . . . , k). We begin with

Fig. 8.2 EM algorithm
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initial ξ0, and let ξt = (
wt

i ,μ
t
i

)
be the candidate at t . The E-step is to e-project

p(y, h; ξt ) to D to obtain qt (h|y). This is the same as that at ξt ,

qt (h|y, ξt ) = wt
h√

2π p
(
y, ξt) exp

{
−1

2

(
y − μt

h

)2
}

. (8.24)

The conditional expectation is

L(ξ, ξt ) =
∑

h

p
(
h|y, ξt)

{
log wh − 1

2
(y − yh)

2

}
(8.25)

up to a constant not depending on the parameters.
The M-step is maximization (m-projection) searching for a new ξt+1 that maxi-

mizes (8.25). By differentiating (8.25) and making it equal to 0, we easily obtain

wt+1
h = 1

N

∑
p

(
h

∣∣yi , ξ
t ) , μt+1

h =
∑

i yi p
(
h

∣∣yi , ξ
t )

∑
i p

(
h

∣∣yi , ξ
t ) . (8.26)

8.2 Loss of Information by Data Reduction

Given original data DX = {x1, . . . , xN }, assume that we summarize it to a statistic

T = T (x1, . . . , xN ) (8.27)

and use it for estimation. Then, we consider an estimator ξ̂ = ξ̂(T ), which is a
function of T . When T is a sufficient statistic, there is no loss of information. Other-
wise, summarizing the data in T will cause loss of information, which is measured
by using the Fisher information. When there is a hidden variable h and we use
T = {

y1, . . . , yN

}
for estimation, T is not sufficient in general.

We define the conditional Fisher information of the original data DX conditioned
on T . When T = t , the probability distribution of DX is given by the conditional
probability p(DX |t; ξ). Hence the Fisher information is given as

gi j (·|t; ξ) = EX
[
∂i log p(DX |t; ξ)∂ j log p(DX |t; ξ)

]
, (8.28)

where EX is the conditional expectation of DX . Taking the average over t , we have
the conditional Fisher information

g
X |T
i j (ξ) = Etgi j (·|t; ξ) . (8.29)

From the equality
gX

i j (ξ) = gT
i j (ξ) + g

X |T
i j (ξ), (8.30)
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where gX
i j , g

T
i j , g

X |T
i j are the Fisher information based on DX , T and DX conditionally

on T . The loss of Fisher information by summarizing data to statistics T is given by

ΔgT
i j (ξ) = g

X |T
i j (ξ). (8.31)

Oizumi et al. (2011) studied the loss of information in the case of spikes of neurons.
Let t firing patterns x1, . . . , xt of neurons be observed. These include firing rates
of neurons, covariances of spikes of two neurons and higher-order correlations of a
number of neurons. Since the brain reduces information in the process of decision
making, it loses some information. Consider a curved exponential family

p(X, ξ) = exp {θ(ξ) · X − ψ} , (8.32)

where X = (
xi , xi x j , . . . , x1 . . . xn

)
and ξ is a parameter to specify the probability

distribution based on which x is generated. When a multiple observation is possible,
we have the sufficient statistic (observed point)

η̄ = 1

N

∑
X i . (8.33)

It includes all the information concerning firing rates, pairwise and higher-order
interactions. An efficient estimator is obtained by m-projecting it to model M of
which the coordinates are ξ.

When a part of η̄ is lost, for example higher-order correlations of spikes are lost,
we cannot identify the observed point. We have instead an observed data submanifold
D. The optimum estimator is the minimizer of DK L [D : M]. The amount of loss of
information is calculated when correlational information is lost (Oizumi et al. 2011).

8.3 Estimation Based on Misspecified Statistical Model

When the true statistical model M = {p(x, ξ)} is very complicated, we are apt to use
a simplified model Mq = {q(x, ξ)} to estimate parameter ξ. This is a misspecified
model. What is the loss of information by using a misspecified model? We begin
with a simple example for illustration of the problem. Assume that n neurons are
arranged in a one-dimensional neural field. When a stimulus is applied at position u,
0 < u < 1, the neuron corresponding to that position and neighboring neurons are
activated. When the i th neuron corresponds to position

u = i

n
, (8.34)

it is excited strongly, and neighboring neurons are also excited. We assume that, for
an arbitrary j , the response of neuron j is r j (u) when a stimulus is applied at u. The
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Fig. 8.3 Tuning curve of
neural field

curve r j (u) is called the tuning curve of neuron j . See Fig. 8.3. We assume that xi is
the firing rate of neuron i subject to a Gaussian distribution of which the mean is ri (u)

and the covariance matrix is V = (
Vi j

)
. Then, the statistical model of excitation is

p(x, u) = c exp

{
−1

2
{x − r(u)}T V −1 {x − r(u)}

}
. (8.35)

Consider a simpler model having the same tuning curves but no correlations,

q(x, u) = c exp

[
−1

2
{x − r(u)}T {x − r(u)}

]
. (8.36)

Wu et al. (2002) showed that there is asymptotically no loss of information even if
we use the simple misspecified model Mq of (8.36). This is good news for the brain.

We study a general case of a misspecified model to see its loss of information.
We consider the case that both p(x, u) and q(x, u) are curved exponential families
lying in a larger exponential family S. The observed point η̄ is asymptotically subject
to the Gaussian distribution with mean η(u) in the true model M and covariance
matrix G {η(u)} /N when the true distribution is p(x, u). The maximum likelihood
estimator using model Mq = {q(x, u)} is called the q-MLE. The q-MLE is obtained
by m-projecting the observed point to Mq by using the q-ancillary family Aq(u),
which is an m-flat submanifold of S passing through q(x, u) and orthogonal to the
tangent space of Mq at u. Since the observed point converges to η(u) as N tends
to infinity, the q-MLE is consistent when the q-ancillary family passing through
q(x, u) passes through p(x, u) ∈ M . See Fig. 8.4.

Theorem 8.3 The q-MLE is consistent when and only when

Ep(x,u)

[
∂a log q(x, u)

] = 0, ∂a = ∂

∂ua
, (8.37)

which holds when the q-ancillary family Aq(u) passes through p(x, u) ∈ M.
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Fig. 8.4 q-auxiliary family
and q-MLE

Proof Let
r(x, u; t) = (1 − t)q(x, u) + tp(x, u) (8.38)

be the m-geodesic connecting q(x, u) and p(x, u). Its tangent vector at Mq is

ṙ = d

dt
log r(x, u, t)

∣∣∣∣
t=0

= 1

q(x, u)
{q(x, u) − p(x, u)} . (8.39)

It is orthogonal to the tangent vectors

l̇q = ∂

∂u
log q(x, u) (8.40)

of Mq , when 〈ṙ , l̇q〉q = 0, which is calculated as

〈ṙ , l̇q〉q =
∫

{q(x, u) − p(x, u)} ∂u log q(x, u)dx

= −
∫

p(x, u)∂u log q(x, u)dx. (8.41)

This implies that (8.37) holds and vice versa. �

The q-MLE estimator is Fisher efficient when the m-geodesic connecting q(x, u)

and p(x, u) is orthogonal to both M and Mq , because the ancillary submanifold
Aq(u) and the true ancillary submanifold A(u) of the true MLE coincide. Hence, the
observed η̄ is mapped to the same û in both M and Mq by the m-projection. When
Aq(u) is not orthogonal to M , there is information loss. This is easily evaluated from
the angles of the q-ancillary submanifold Aq(u) and M .
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Theorem 8.4 The q-MLE estimator is Fisher efficient when the q-ancillary family
is orthogonal to M. When it is not orthogonal, the loss of Fisher information is given
by

Δgab(u) = gaκ(u)gbλ(u)gκλ(u), (8.42)

where vκ is the transversal coordinate system in Aq(u).

Proof By using the q-ancillary family, we can map the observed point η̄ to Mq .
This is efficient when and only when Aq(u) is orthogonal to the tangent space of
M . Otherwise, there is information loss. By using the (u, v)-coordinates, where
u = (ua) and v = (vκ) are the coordinates along the ancillary family Aq(u), the
q-MLE is mapped through it, but this is a non-orthogonal mapping to M . Hence,
loss of information occurs, as is given in (7.58) or (8.42).

Remark When the q-ancillary family Aq(u) does not pass p(x, u), the q-estimator
is not consistent. However, when this does not hold, let f (u) be the coordinates of M
at which Aq(u) intersects M . If we reparameterize Mq such that the new parameter
of Mq is f −1(u), then the consistency always holds.

Remarks

The present short chapter introduces statistical models which are different from
a regular model. One is a model with hidden variables, in which some random
variables are not observed. The EM algorithm is known in such a model. From the
geometrical point of view, it is nothing other than the em algorithm, which minimizes
the divergence between the model manifold M and data manifold D derived from
observed data. This is now a standard method in machine learning. When it was
proposed by Csiszár and Tusnady (1984), the paper was rejected by a journal because
the reviewer did not admit computationally heavy iterative procedures (I. Csiszár,
personal communication). So this remains a conference paper.

Another model is a misspecified model. Its performance is easily understood from
geometry, so that it is a good example to show the power of information geometry.
The brain might use a misspecified or unfaithful statistical model for decoding infor-
mation, because the true model is often unknown or too complicated. Therefore, we
need to know the performance of the misspecified model. Oizumi et al. (2015) use a
misspecified model to evaluate the amount of integrated information to measure the
degree of consciousness.

http://dx.doi.org/10.1007/978-4-431-55978-8_7


Chapter 9
Neyman-Scott Problem: Estimating
Function and Semiparametric
Statistical Model

The present chapter studies the famous Neyman–Scott problem, where the number
of unknown parameters increases in proportion to the number of observations. The
problem gave a shock to the statistics community, because the MLE is not neces-
sarily asymptotically consistent or efficient in this problem. We solve the problem
by constructing information geometry of estimating functions. The problem is refor-
mulated in the framework of a semiparametric statistical model, which includes a
finite number of parameters of interest and a nuisance parameter of function degrees
of freedom. The problem uses a function space but we apply an intuitive descrip-
tion, sacrifying mathematical justification. The results are useful for solving both the
semiparametric and Neyman–Scott problems.

9.1 Statistical Model Including Nuisance Parameters

Let us consider a statistical model

M = {p(x, u, v)} (9.1)

which includes two types of parameters. One is a parameter which we want to esti-
mate, denoted by u. This is called the parameter of interest. The other, denoted by
v, is a parameter the value of which is of no concern to us. It is called a nuisance
parameter. We give two examples.

1. Measurement under Gaussian noise:scale problem: Let us measure the weight
of a specimen repeatedly by using a scale. The true weight is μ but measurements
x1, . . . , xN are independent random Gaussian variables with mean μ and variance σ2,
where σ2 represents the accuracy of the scale. When we have interest in estimating

The original version of this chapter was revised: The incomplete texts have been updated.
The correction to this chapter is available at https://doi.org/10.1007/978-4-431-55978-8_14

© Springer Japan 2016, corrected publication 2020
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μ but do not care about σ2, μ is the parameter of interest and σ2 is the nuisance
parameter. When we are interested in knowing the accuracy σ2 of the scale but do
not care about μ, σ2 is the parameter of interest and μ the nuisance parameter.

2. Coefficient of proportionality: We consider a pair (x, y) of Gaussian random
variables, where x and y represent the volume and the weight of a specimen, respec-
tively. Here, x is a noisy observation of the volume v of the specimen and y is the
noisy observation of its weight uv, where u is the specific gravity of the specimen.
We assume that the noises are independent and Gaussian with mean 0 and variance
1. Then, their joint distribution is specified by

x ∼ N (v, 1), y ∼ N (uv, 1). (9.2)

When we are interested only in specific gravity u, i.e., the coefficient of proportion-
ality, but do not care about v, u is the parameter of interest and v is the nuisance
parameter. The joint probability is written as

p(x, y; u, v) = 1

2π
exp

[
−1

2

{
(x − v)2 + (y − uv)2

}]
. (9.3)

The problem is easy, because given observed data D = {(x1, y1) , . . . , (xN , yN )},
we can use the MLE to estimate u and v and simply discard the estimator v̂ of the
nuisance parameter. Since MLE

(
û, v̂

)
is efficient, the estimator û is efficient.

Let the Fisher information matrix in the model (9.1) of all the parameters ξ =
(u, v) be gαβ , where we use suffixes α,β for the entire ξ = (ξα) , a, b, c, . . . for the
parameter u = (ua) of interest and κ,λ,μ, . . . for the nuisance parameter v = (vκ).
The Fisher information matrix is partitioned as

gaβ =
[

gab gaκ

gλb gκλ

]
, (9.4)

where, by putting l = log p,

gab = E [∂al(x, u, v)∂bl (x, u, v)] , (9.5)

gaκ = E [∂al(x, u, v)∂κl(x, u, v)] , (9.6)

gκλ = E [∂κl(x, u, v)∂λl(x, u, v)] . (9.7)

The asymptotic error covariance of the entire estimator ξ̂ = (
û, v̂

)
is given by

using its inverse as

E
[(

ξ̂α − ξα
) (

ξ̂β − ξβ
)]

= 1

N
gαβ . (9.8)

The inverse of the Fisher information matrix is also partitioned as

gαβ =
[

gab gaκ

gλb gλκ

]
, (9.9)
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where its (a, b)-part
(
gab

)
is not the inverse of the (a, b)-part (gab) of

(
gαβ

)
. It is the

(a, b)-part of the inverse
(
gαβ

)
of

(
gαβ

)
. The two are different and

(
gab

)
is given by

the inverse of
ḡab = gab − gaκg

κλgλb, (9.10)

as is clear from the inversion of a partitioned matrix.
We have

(ḡab) ≤ (gab) (9.11)

in the sense of a positive-definite matrix, which means that information is lost in the
presence of unknown nuisance parameter v. This is because, when v is known, the
Fisher information is (gab). Since the covariance of the estimation error, when v is
unknown, is asymptotically

E
[(

ûa − ua
) (

ûb − ub
)] = 1

N
ḡab, (9.12)

(ḡab) is called the efficient Fisher information matrix. The tangent vectors ea and eκ

along the u and v coordinate axes are represented by score functions

ea = ∂a log p(x, ξ), eκ = ∂κ log p(x, ξ). (9.13)

Let us project ea to the space orthogonal to the subspace spanned by eκ (Fig. 9.1).
Then, the projected vector is given by

ēa = ea − gaλg
λκeκ, (9.14)

Fig. 9.1 Efficient score ēa
in the presence of nuisance
parameter
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or, in terms of the score functions,

∂̄al(x, ξ) = ∂al(x, ξ) − gaλg
λκ∂κl(x, ξ). (9.15)

This is called the efficient score, because the efficient Fisher information matrix is

ḡab = 〈ēa, ēb〉 = E
[
∂̄al∂̄bl

]
. (9.16)

This shows that only the part orthogonal to the nuisance direction is effective, keeping
information for estimating u, and the part in the nuisance direction is useless, because
v is unknown.

When the subspace spanned by the scores of the parameter of interest is orthogonal
to the nuisance parameters, we have gaκ = 0. In this case,

gab = ḡab (9.17)

holds, so there is asymptotically no loss of information. Therefore, it is desirable to
choose the nuisance parameters such that the orthogonality holds. Given a statistical
model M = {p(x, u, v)}, we consider the problem of reparameterizing v depending
on u as

v′ = v′(u, v) (9.18)

such that
gaλ = E

[
∂al

(
x, u, v′) ∂λl

(
x, u, v′)] = 0. (9.19)

This is in general impossible (see p. 254 in Amari 1985). However, when u is a scalar
parameter, it is always possible.

9.2 Neyman–Scott Problem and Semiparametrics

Neyman and Scott (1948) presented a class of statistical problems and questioned
the validity of the MLE, by showing that the asymptotic consistency and efficiency
of the MLE are not guaranteed in some of their models. Let M = {p(x, u, v)} be a
statistical model and let x1, . . . , xN be N independent observations. The value of u
(the parameter of interest) is kept the same (unknown) throughout the observations,
but v changes each time. Hence, xi is subject to p(x, u, vi ). This is the Neyman–Scott
problem and there are many examples of this type.

The estimation of the radius of the stone circle, Stonehenge in England, is a
well-known romantic problem of this type. The stones are supposed to have been
arranged in a circle to start with, but their positions have been disturbed in their long
history. See Fig. 9.2. The radius u of the stone circle is the parameter of interest,
and the declination angle of the i th stones vi is the nuisance parameter. We show
later another problem of estimating the shape parameter from neural spikes under
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Fig. 9.2 Location of the i th
stone

. vi

u r=

stone i

changing firing rates. Independent component analysis, treated in Chap. 13, is also
of this type. There are similar problems in computer vision (Kanatani 1998; Okatani
and Deguchi 2009).

We use the problem of the coefficient of proportionality as a working example. It
consists of N independent observations (xi , yi ) , i = 1, . . . , N , subject to

xi = vi + εi , yi = uvi + ε′
i , (9.20)

where εi and ε′
i are independent noises subject to Gaussian distributions with mean

0 and common variance σ2. We assume that σ2 is known. The joint probability
distribution of (xi , yi ) is

p (xi , yi , u, vi ) = 1

2πσ2
exp

{
− (xi − vi )

2 + (yi − uvi )
2

2σ2

}
. (9.21)

Here, u and vi , are scalar parameters.
Figure 9.3a shows an example of observed data and the problem is to draw a

regression line to fit the data. The problem looks very simple, but is not. We show a
number of intuitive solutions to this problem.

x

y

y ux=

x

y

y ux=

x

y

y ux=

(a) (b) (c)

Fig. 9.3 Coefficient of proportionality: a Observed data; b least squares; c total least squares

http://dx.doi.org/10.1007/978-4-431-55978-8_13
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1. Least squares solution
The least squares solution is the minimizer of

L = 1

2

∑
(yi − uxi )

2 , (9.22)

which is the sum of the squares of vertical errors to the regression line (Fig. 9.3b).
The solution is

û =
∑

yi xi∑
x2

i

. (9.23)

However, this is a bad solution. It is not consistent even asymptotically and it does
not converge to the correct u even when N increases to become infinitely large.

2. Averaging method
Let ûi = yi/xi be the ratio obtained from one specimen. Their average

û = 1

N

∑
ûi (9.24)

gives a consistent estimator. This is better than the least squares solution but is not
so good in general.

3. Gross average method
Let us sum up all xi and all yi separately. Then calculate their ratio,

û =
∑

yi∑
xi

. (9.25)

This is a good consistent estimator. It is of interest to know how good it is.

4. Total least square solution
Instead of minimizing the vertical errors in the least squares solution, we minimize
the square of the lengths of orthogonal projection to the regression line (Fig. 9.3c).
This is called the total least squares (TLS) solution. It is given by solving

∑
(yi − uxi ) (uyi + xi ) = 0. (9.26)

5. MLE
We estimate all the parameters u, v1, . . . , vN , jointly by maximizing the likelihood,
and we disregard all v̂i , keeping û only. This is the MLE. We can prove that this is
identical with the TLS solution.

We use a semiparametric formulation of the Neyman–Scott problem. Since the
sequence v1, . . . , vN is arbitrary and unknown, we assume that it is generated from
an unknown probability distribution k(v). In order to generate the i th example xi

((xi , yi ) in the above example), Nature chooses vi from distribution k(v). Then, xi
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is chosen from p (x, u, vi ). Thus, each xi is subject to one and the same probability
distribution

p(x, u, k) =
∫

p(x, u, v)k(v)dv. (9.27)

We treat an extended statistical model

M̃ = {pK (x, u, k)} (9.28)

which includes two parameters: One is u, the parameter of interest, and the other is a
function k(v). Each observation is independently and identically distributed (iid) in
this setting, but the underlying model includes the nuisance parameter k of function
degrees of freedom. Such a model is called a semiparametric statistical model (Begun
et al. 1983). We study the problem under this formulation.

9.3 Estimating Function

An estimating function is a generalization of the score function which is the deriva-
tive of the log likelihood and is used to obtain the ML estimator. It is particu-
larly convenient for a model having a nuisance parameter. For a statistical model
M = {p(x, u, v)}, we consider a differentiable function f (x, u) which does not
depend on v. Here, we treat the case where u and v are scalar parameters for sim-
plicity, but it is easy to generalize it to the case with vector u and vector v.

A function f (x, u) is called an estimating function, or more precisely an unbiased
estimating function, when

Eu,v [ f (x, u)] = 0, (9.29)

Eu,v

[
f
(
x, u′)] �= 0, u′ �= u (9.30)

hold for any v, where Eu,v is the expectation with respect to p(x, u, v). See Godambe
(1991). We further assume

Eu,v

[
f ′ (x, u)

] �= 0, (9.31)

where f ′ is the derivative with respect to u. An estimating function of M satisfies

EpK (x,u,k)

[
f
(
x, u′)] = 0, when and only when u′ = u, (9.32)

for an arbitrary function k(v), when a statistical model M is extended to a semi-
parametric model M̃ in (9.28). This is because pK (x, u, k) is a linear mixture of
p(x, u, v) with mixing distribution k(v).
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The law of large numbers guarantees that the arithmetic mean of f (xi , u) over the
observed data converges to its expectation. Hence, because of (9.29), the solution of

1

N

∑
f (xi , u) = 0 (9.33)

will give a good estimator; (9.33) is called an estimating equation. In the case of a
statistical model without a nuisance parameter, the score function

l̇(x, u) = d

du
log p(x, u) (9.34)

satisfies (9.29), so it is an estimating function. In this case, (9.33) is the likelihood
equation and the derived estimator is the MLE.

We analyze the asymptotic behavior of the estimator derived from an estimating
function.

Theorem 9.1 The estimator û derived from an estimating function f (x, u) is asymp-
totically unbiased and its error covariance is given asymptotically by

E
[(

û − u0
)2

]
= 1

N

E
[{ f (x, u0)}2

]
{E [ f ′ (x, u0)]}2 , (9.35)

when u0 is the true parameter.

Proof The proof is given by a similar method as the asymptotic analysis of MLE.
We expand the left-hand side of (9.33) at u0,

1√
N

∑
f
(
xi , û

)

= 1√
N

∑
f (xi , u0) + 1√

N

∑
f ′ (xi , u0)

(
û − u0

)
. (9.36)

The first term in the right-hand side converges, due to the central limit theorem, to a
Gaussian random variable ε with mean 0 and variance

σ2 = E
[{ f (x, u0)}2] . (9.37)

The last term of (9.36) converges, due to the law of large numbers, to
√

N A, where

A = E
[

f ′(x, u0)
] �= 0. (9.38)

Hence, we have

û − u0 = 1√
N

ε

A
, (9.39)
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from which we have (9.35). �

An estimating function gives an unbiased estimator of which the error covariance
converges to 0 in the order of 1/N . However, there is no guarantee that an estimating
function really exists. When does it exist? If there are many estimating functions,
how should we choose a good one? These are questions we should address. We use
information geometry in answering these questions.

Although we explain the scalar parameter case, our method holds in the vec-
tor case. When the parameter u of interest is vector-valued, an estimating function
f (x, u) is vector-valued, having the same dimensions as u. An f (x, u) is an (unbi-
ased) estimating function when it satisfies

Eu,v

[
f
(
x, u′)] {= 0, u′ = u,

�= 0, u′ �= u
(9.40)

and also the matrix

A = Eu,v

[
∂

∂u
f (x, u)

]
(9.41)

is non-degenerate. The estimating equation is a vector equation

∑
f (xi , u) = 0. (9.42)

The resulting estimator is asymptotically unbiased and Gaussian, having the asymp-
totic error covariance matrix

E
[(

û − u
) (

û − u
)T

]
= 1

N
A−1E

[
f (x, u) f T (x, u)

] (
A−1

)T
. (9.43)

9.4 Information Geometry of Estimating Function

The statistical model M̃ is parameterized by u and k(v), the latter of which has
function-degrees of freedom. So we are obliged to use intuitive treatment, not
mathematically rigorously justified, but the results are useful. In the function space
F = {p(x)}, let us consider a submanifold MU (k) obtained by fixing the mixing
function k(v). It is one-dimensional, that is, it is a curve, having a scalar parameter
u. It is denoted by

MU (k) = {pK (x, u, k) | k fixed } . (9.44)

We then consider an infinite-dimensional submanifold

MK (u) = {pK (x, u, k) | u fixed } , (9.45)
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Fig. 9.4 Two submanifolds
MU (k) and MK (u) and their
tangent vectors

MK( )u

M
~

MU ( )k
u

lb

.

lu

.

( , )u k

where u is fixed but the mixing k(v) is free. One may consider that, for each u, an
infinite-dimensional MK (u) is attached as a fiber. See Fig. 9.4.

The tangent space at a point (u, k) of M̃ is spanned by infinitesimally small
deviations δ pK (x, u, k) of probability density pK (x, u, k). By using the logarithmic
expression, lK (x, u, k) = log pK (x, u, k), we have

δlK (x, u, k) = δ pK (x, u, k)

pK (x, u, k)
, (9.46)

where
Eu,k [δlK (x, u, k)] = 0, (9.47)

Eu,k being the expectation with respect to pK (x, u, k). This shows that the tangent
space Tu,k at (u, k) ∈ M̃ is composed of random variables r(x) satisfying

Eu,k [r(x)] = 0. (9.48)

We assume
Eu,k

[{r(x)}2] < ∞ (9.49)

and the inner product of two tangent vectors r(x) and s(x) are defined by

〈r, s〉 = Eu,k [r(x)s(x)] . (9.50)

So the tangent space Tu,k is a Hilbert space. An estimating function f (x, u) satisfies
(9.48) at any (u, k), so it is a vector belonging to Tu,k for any k.

The tangent vector along the u-coordinate axis

d

du
lK (x, u, k) = l̇u(x, u, k) (9.51)
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satisfies (9.48). The one-dimensional subspace

TU (u, k) = {
l̇u(x, u, k)

}
(9.52)

composed of the u-score vector l̇u(x, u, k) is called the tangent subspace of interest
at (u, k). In order to define tangent vectors along the nuisance parameter k(v), we
consider a curve in the function space of k(v), written as

k(v, t) = k(v) + tb(v), (9.53)

where ∫
b(v)dv = 0, (9.54)

because ∫
k(v, t)dv = 1. (9.55)

There are infinitely many curves, each specified by b(v). The tangent vector along a
curve (9.53) is defined by

l̇b(x, u, k) = d

dt
log pK {x, u, k(v, t)} |t=0 = 1

pK (x, u, k)

∫
p(x, u, v)b(v)dv.

(9.56)
Let us denote by TK (u, k) the space spanned by the tangent vectors of all such curves,
called the nuisance tangent subspace at (u, k).

Note that there are tangent vectors not belonging to TU and TK , which are not
included in the directions of change in u or k. We denote the subspace orthogonal to
both of TU and TK by TA, which we call an ancillary tangent subspace (Fig. 9.5).
Then, the tangent space is decomposed as

T = TU ⊕ TK ⊕ TA (9.57)

at each point (u, k), where ⊕ implies the direct sum. TA is orthogonal to TU ⊕ TK ,
but TU and TK are not orthogonal in general.

We define e-parallel transport and m-parallel transport of a tangent vector
r(x) along the nuisance submanifold MK (u). We consider a small change of
log pK (x, u, k) in the direction r(x),

δlK (x, u, k) = εr(x), (9.58)

where ε is small. Since the e-representation of pK (x, u, k) is lK (x, u, k), it is natural
to consider that r(x) is e-parallelly transported from k to k ′ without any change. But
when r(x) ∈ Tu,k , it does not belong to Tu,k ′ , because
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Fig. 9.5 Decomposition of
tangent space Tu,k

( , )u k .

TK

TU

TA

Tu,k

Eu,k ′ [r(x)] �= 0 (9.59)

in general. We subtract the average and define the e-parallel transport of r(x) from
pK (x, u, k) to pK

(
x, u, k ′) by

e∏k ′

k
r(x) = r(x) − Eu,k ′ [r(x)], (9.60)

where
e∏k ′

k
is the operator of the e-parallel transport from k(v) to k ′(v) in MK (u).

Obviously,

Eu,k ′

⎡
⎣ e∏k ′

k
r(x)

⎤
⎦ = 0. (9.61)

We next define the m-parallel transport. Since the m-representation of a deviation
of p(x) is δ p(x), it is natural to consider that δ p(x) does not change when it is
transported in parallel from k to k ′. However, its e-representation is

δl(x) = δ p(x)

pK (x, u, k)
, (9.62)

so its e-representation changes at k ′ as δ p(x)/pK
(
x, u, k ′). In order to compensate

for this change, we define the m-parallel transport of r(x) from k to k ′ by

m∏k ′

k
r(x) = pK (x, u, k)

pK (x, u, k ′)
r(x), (9.63)

where
m∏k ′

k
is the m-parallel transport operator from k to k ′. It satisfies
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Eu,k ′

⎡
⎣ m∏k ′

k
r(x)

⎤
⎦ = 0. (9.64)

The two parallel transports are dual, as is shown in the following theorem.

Theorem 9.2 The e- and m-parallel transports are dual, keeping the inner product
invariant:

〈a(x), b(x)〉k =
〈

e∏k ′

k
a(x),

m∏k ′

k
b(x)

〉
k ′

. (9.65)

The proof is easy from the definitions (9.60) and (9.63).

Lemma The nuisance tangent space TK (u, k) is invariant under the m-parallel
transport from k to k ′, where u is fixed.

Proof Since any tangent vector at k is written in the form of (9.56) by using b(v), it
is m-parallelly transported to k ′ and is written in the same form by using the same
b(v), where k is replaced by k ′. �

We can now characterize the estimating function in geometrical terms.

Theorem 9.3 An estimating function is a tangent vector orthogonal to the nuisance
tangent space and is invariant under the e-parallel transportation along MK (u).
It includes a non-zero component in the tangent direction TU of the parameter of
interest.

Proof Because of (9.32),
e∏k ′

k
f (x, u) = f (x, u) (9.66)

holds so that it is invariant under the e-parallel transport along the nuisance direction.
Let us take a curve k(v, t) and differentiate (9.32) with respect to t . Then we have

∫
ṗK (x, u, k(t)) f (x, u)dx = E

[
l̇b(x, u, k) f (x, u)

] = 0. (9.67)

Since the nuisance tangent space TK is spanned by l̇b, f is orthogonal to all the
nuisance tangent vectors. We next differentiate (9.32) with respect to u. We then
have

E
[

f ′(x, u)
] + 〈l̇u(x, u, k), f (x, u)〉 = 0. (9.68)

Since
E

[
f ′(x, u)

] �= 0, (9.69)

f should include a component in the direction TU of interest. �
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Consider the projection of the score vector l̇u(x, u, k) to the subspace orthogonal
to the tangent space TK of nuisance parameter and denote it by l̇E (x, u, k). We call
it the efficient score in M̃ . Although it depends on k(v), it is an estimating function
for any k(v) when it is fixed.

We construct the tangent nuisance space TK (x, u, k) in terms of the nuisance
score

l̇v(x, u, v) = d

dv
log p(x, u, v) (9.70)

of M . The tangent nuisance space TK of M̃ is spanned by the tangent vectors in the
directions of b(v) along the curve given by (9.53). Let

δ′
w(v) = d

dv
δ(v − w) (9.71)

be the derivative of the delta function. Since b(v) satisfies (9.54), any b(v) is written
as a weighted integration of δ′

w(v),

b(v) =
∫

δ′
w(v)B(w)dw, (9.72)

where the weight is

B(w) = −
∫ w

0
b(v)dv. (9.73)

Hence, the tangent vector in the direction of b(v) = δ′
w(v) is written from (9.56) as

l̇δ′
w
(x, u, k) = −1

pK (x, u, k)

∫
p(x, u, v)δ′

w(v)dv

= p(x, u, w)

pK (x, u, k)
l̇v(x, u, w)

(9.74)

by using the nuisance score lv(x, u, w) of M . Thus, TK at k is spanned by the m-
parallel transports of the elementary tangent scores lv(x, u, w) for all w and

l̇δ′
w
(x, u, k) =

m∏k

δw

l̇v(x, u, w). (9.75)

The following theorem is immediate.

Theorem 9.4 The nuisance tangent space is m-parallelly invariant,

m∏k ′

k
TK ,u,k = TK ,u,k ′ (9.76)
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and spanned by the m-parallel transports of elementary nuisance scores l̇v(x, u, w)

for all w.

Let f (x, u) be an estimating function. It is e-parallelly invariant and orthogonal
to TK . Therefore, because

0 =
〈

f,
m∏k

δ′
w

l̇v(x, u, w)

〉
= 〈 f, l̇v(x, u, w)〉, (9.77)

it is orthogonal to the elementary nuisance v-score l̇v(x, u, w) of M for any v = w.
In order to obtain the efficient scores in M̃ , we consider the tangent vector in the
direction of u at a specific point (u, δw), where we put k = δw. Then, it is the same
as the u-score in M ,

l̇u (x, u, δw) = l̇u(x, u, w). (9.78)

We construct an efficient score from it, by making it orthogonal to TK . Since TK is
spanned by all the elementary nuisance scores, we need to project l̇u to the space
orthogonal to all the m-transports of lv

(
x, u, w′) from δw′ to δw for all w′. The

projected score is e-invariant, so it is an estimating function. The efficient score
l̇E (x, u, k) at k is constructed by a linear combination with respect to k(v) of these
elementary efficient scores.

We have the following theorem from this.

Theorem 9.5 An estimating function exists when, and only when, the efficient score
is non-zero. Any estimating function is written, using an arbitrary nuisance function
k0(v), in the form

f (x, u) = l̇E (x, u, k0) + a(x), (9.79)

where an ancillary tangent vector a(x) ∈ TA,u,k0 depends on k0.

Proof It is easy to see that a(x) is orthogonal to both TK and TU . �

Theorem 9.6 Let pK (x, u, k0) be the true probability distribution. Then, the best
estimating function is l̇E (x, u, k0) and the asymptotic error covariance is

E
(
û − u

)2 = 1

N

E
[
l̇2
E

]
{
E

[
l̇E

]}2 . (9.80)

The theorem gives a bound on the asymptotic covariance of error. However, since
the true k0 = k(v) is unknown, we cannot use it. But l̇E (x, u, k1) works well even
for an approximate value k1 of k0. Even when k1 is quite different from the true one,
l̇E (x, u, k1) still gives a consistent estimator.

Remark A statistical model in the Neyman–Scott problem is linear in k(v), because
it is a mixture model. The nuisance tangent space is invariant under the m-parallel
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transport in such a linear model. However, if we study a general semiparametric model
where the probability density is not linear with respect to the nuisance function, the
tangent nuisance spaces are not invariant by the m-parallel transport. An estimation
function is therefore required to be orthogonal to all the tangent nuisance scores at
all k. Hence, it is the projection of the u-score vector to the subspace orthogonal to
m-transports of the nuisance subspace at all k ′. This is called the information score
at k. See Amari and Kawanabe (1997).

9.5 Solutions to Neyman–Scott Problems

9.5.1 Estimating Function in the Exponential Case

We consider a typical case where p(x, u, v) is of the exponential type with respect
to v, that is,

p(x, u, v) = exp {vs(x, u) + r(x, u) − ψ(u, v)} , (9.81)

where s(x, u) and r(x, u) are functions of x and u.

Lemma The u-score at k is given by

l̇u(x, u, k) = s ′(x, u)E [v|s] + r ′(x, u) − E
[
ψ′ |s ]

, (9.82)

where E[·|s] is the conditional expectation conditioned on s.

Proof We calculate the u-score by differentiating the logarithm of (9.27) with respect
to u. By taking (9.81) into account,

l̇u(x, u, k) = 1

pK (x, u, k)

∫ {
vs ′(x, u) + r ′(x, u) − ψ′}

× exp {vs + r − ψ} k(v)dv, (9.83)

where s ′, r ′ and ψ′ are derivatives of s, r and ψ with respect to u. Since v is a random
variable subject to k(v), we consider the joint probability of v and s(x, u). Then, we
have the conditional distribution of v conditioned on s(x, u),

p(v|s) = k(v) exp {vs + r − ψ}∫
k(v) exp {vs + r − ψ} dv

= k(v) exp {vs + r − ψ}
pK (x, u, k)

. (9.84)

Hence, we have from (9.83)

l̇u = s ′E [v|s] + r ′ − E
[
ψ′|s] . (9.85)

�
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The tangent direction corresponding to a change of k by δk is written as

δlK (x, u, k) =
∫

p(x, u, v)δk(v)

pK (x, u, k)
dv. (9.86)

Hence, by putting b(v) = δ′
w(v) and using (9.74), the tangent nuisance space is

spanned by

δwl(x, u, k) = ε
p (x, u, w)

pK (x, u, k)
l̇v(x, u, w) (9.87)

for all w, which corresponds to a change of k(v) at w. The score corresponding
to a change δk(v) in the nuisance function k(v) is similarly written in the form of
conditional expectation by using (9.84),

l̇K (x, u, k) = E

[
δk(v)

k(v)
|s

]
. (9.88)

This is a function of s(x, u). Hence, the nuisance subspace is generated by s(x, u)

and is written as
TK = [h {s(x, u)}] , (9.89)

by using an arbitrary function h of s. We finally have the following theorem.

Theorem 9.7 The efficient score at k is given by

l̇E = E [v|s]
{
s ′(x, u) − E

[
s ′ |s ]} + {

r ′(x, u) − E
[
r ′ |s ]}

. (9.90)

Proof The efficient score is the projection of the score of interest to the subspace
orthogonal to the nuisance tangent space. Since, for two random variables s and t ,
t − E[t |s] is the projection of t to the subspace orthogonal to the space generated by
s, we have the theorem. �

Corollary When the derivative of s with respect to u is a function of s, we have

l̇E (x, u, k) = r ′(x, u) − E
[
r ′|s] . (9.91)

Proof In this case,
s ′ − E

[
s ′ |s ] = 0, (9.92)

which gives (9.91). Since (9.91) does not depend on k, this gives the asymptotically
optimal estimating function. �
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9.5.2 Coefficient of Linear Dependence

After a long journey, we can now solve specific Neyman–Scott problems. The first is
the problem of linear dependence. The problem stated in (9.20) is of the exponential
type, so it is written in the form of (9.81), where

s(x, u) = x + uy (9.93)

r(x, u) = −1

2

(
x2 + y2

)
. (9.94)

Since r does not depend on u, the efficient score is given as

l̇E = 1

1 + u2
(y − ux)E [v|s] . (9.95)

We put
E[v|s] = h(s) = h(uy + x). (9.96)

Then, we have a class of estimating functions written as

f (x, u) = (y − ux)h(uy + x), (9.97)

where h is an arbitrary function.
When the true nuisance function is k, the best h(s) is given by

h(s) = Eu,k[v|s], (9.98)

which depends on the unknown k. The point is that, even when we do not know k,
an estimating function in the class (9.97) gives a consistent estimator of which the
error covariance decreases in proportion to 1/N .

The TLS estimator is obtained by putting

h(s) = s. (9.99)

The gross average estimator is obtained from

h(s) = c, (9.100)

where c is a constant. Let us consider a simple linear function

h(x) = s + c, (9.101)

which will give a better estimator than the two above by choosing c adequately. The
estimating equation is
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∑
(yi − uxi ) (uyi + xi + c) = 0. (9.102)

Let ûc be the solution of (9.102). Then we have

E
[(

ûc − u
)2

]

=
(
1 + u2

){
c + (

1 + u2
)
v̄
}2 + (

1 + u2
)2

{
v̄2 − (v̄)2

}
+ (

1 + u2
)

cv̄ + (
1 + u2

)
v̄2

, (9.103)

where

v̄ = 1

N

∑
vi , v̄2 = 1

N

∑
v2

i . (9.104)

Therefore, the error is minimized by choosing

ĉ = v̄

v̄2 − (v̄)2
. (9.105)

This shows that, when the distribution of k(v) is wide-spread, the TLS is a good
estimator, whereas, when the distribution of k(v) is tight, the gross average estimator
is better.

9.5.3 Scale Problem

There are two versions in the scale problem. One is to estimate the accuracy of a
scale by using N specimens. The other is to estimate the weight of a specimen by
using N scales of different accuracies.

1. Accuracy of a scale: We prepare N specimens of which weights v1, . . . , vN

are different and unknown. Our aim is to estimate the error variance σ2 of a scale.
When the weight is v and error variance is σ2, the measurement x is a random
variable subject to N

(
v,σ2

)
. We repeat measurements m times for each specimen.

Let x = (x1, . . . , xm) be m measurements by a specimen. The probability density of
x is

p(x;μ,σ2) = exp

{
−

∑
(xi − μ)2

2σ2
− ψ

}
, (9.106)

which can be rewritten as

p(x, u, v) = exp
{
vs(x, u) − u

2
r(x, u) − ψ

}
, (9.107)
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where we put

u = 1

σ2
, v = μ (9.108)

s(x, u) = ux̄, r(x, u) = −u

2
x̄2 (9.109)

x̄ =
m∑

i=1

xi , x̄2 =
m∑

i=1

x2
i . (9.110)

Since

s ′(x, u) = 1

u
s(x, u) (9.111)

is a function of s, the efficient score is

l̇E (x, u) = r ′ − E
[
r ′|s] . (9.112)

This is the orthogonal projection of x̄2 to the subspace orthogonal to x̄ . The estimating
function is

l̇E (x, u) = 1

u
− 1

m − 1

(
x̄2 − 1

m
x̄2

)
, (9.113)

which does not include k. Hence, this gives an efficient estimator,

σ̂2 = 1

N

∑
σ̂2

i , (9.114)

σ̂2
i = 1

m − 1

[(
x̄2

)
i
− 1

m
(x̄)2

i

]
. (9.115)

This is the best estimator different from the MLE. When the numbers mi of mea-
surements are different, we can solve the problem in a similar way.

2. Weight of a specimen by using N scales: We next consider the case in which
we have N scales having different unknown error covariances. In this case, we have
only one specimen, the weight of which we want to know. We measure its weight m
times by using each scale. In this case, we put

u = μ, vi = 1

σ2
i

, (9.116)

so, for one scale, the probability density is

p(x, u, v) = exp
{
−v

2

∑
(xi − u)2 − ψ

}
. (9.117)
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In this case, we have

s = −1

2

k∑
i=1

(xi − u)2 = −1

2

(
x̄2 − 2ux̄ + u2

)
, (9.118)

r = 0. (9.119)

We can check that s ′ is orthogonal to s, so the efficient score is

l̇E (x, u) = (x̄ − u) h(s), (9.120)

where h is an arbitrary function. If we fix h(s), then the estimator is

û =
∑

h (si ) x̄i∑
h (si )

. (9.121)

The optimum h depends on the unknown k(v),

h(s) = E [v|s] , (9.122)

but any h will give an asymptotically consistent estimator. It is a surprise that this
simple problem has such a complicated structure.

9.5.4 Temporal Firing Pattern of Single Neuron

Let us consider a single neuron which fires stochastically. We assume that it fires at
time t1, t2, . . . , tn+1, which are random variables. The intervals of spikes are

Ti = ti+1 − ti , i = 1, 2, . . . . (9.123)

Obviously, when the firing rate is high, the interval is short. The simplest model of
a temporal firing pattern is that all Ti are independent, subject to the exponential
distribution

q(T, v) = v exp {−vT } , (9.124)

where v is the firing rate. The number of spikes is subject to the Poisson distribution.
However, Ti are not independent in reality, because of the effect of refractoriness. It
is known that the gamma distribution fits well,

p(T, v,κ) = (vκ)κ

�(κ)
T κ−1 exp {−vκT } , (9.125)
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which includes another parameter κ, called the shape parameter. We want to know
κ, which is the parameter of interest, so we put u = κ, whereas v is the nuisance
parameter. The average and variance of Ti are

E[T ] = 1

v
, Var[T ] = 1

κv2
. (9.126)

The parameter κ represents the irregularity of spike intervals. When κ is large, the
spikes are emitted regularly and have almost the same intervals. When κ = 1, Ti are
independent, and when κ is small, the irregularity increases.

Given observed data {T1, . . . , Tn}, it is easy to estimate the parameters κ and v.
This is a simple problem of estimation. However, in a real experimental situation,
the firing rate v changes over time but the shape parameter κ is fixed, depending on
the type of the neuron. So we regard v as a nuisance parameter changing over time,
while κ is the parameter of interest. This is a typical Neyman–Scott problem.

We assume that v takes the same value for two consecutive times. (It can be m
consecutive times for m ≥ 2, but we consider the simplest case.) So we collect two
observations T2k−1 and T2k , and put them in a box. Hence, the kth observation is
T k = (T2k−1, T2k). The two intervals T2k−1, T2k in a box are subject to the same
distribution

p (T k, vk,κ) =
m∏

i=1

p (Ti , vk,κ) , (9.127)

where vk may change arbitrarily in each box.
We calculate the u-score and v-score as

u(T ) = ∂ log p (T , v,κ)

∂κ
, v(T ) = ∂ log q(T , v,κ)

∂v
. (9.128)

The efficient score is obtained in this case after calculations (see Miura et al. 2006) as

uE (T ,κ) =
∑

log Ti − m log
(∑

Ti

)
+ mφ(mk) − mφ(κ), (9.129)

where

φ(κ) = d

dκ
�(κ) (9.130)

is the di-gamma function. Since this does not include v, it is the best estimating
function, and the estimating equation is

∑
uE (T i ,κ) = 0. (9.131)

The statistics used in the estimating function is summarized as
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S = − 1

n − 1

∑
i

1

2
log

4Ti Ti+1

(Ti + Ti+1)
2 , (9.132)

which includes all the information.
Shinomoto et al. (2003) proposed to use another statistic:

LV = 3 − 12

n − 1

∑ Ti Ti+1

(Ti + Ti+1)
2 . (9.133)

Interestingly, the two statistics are derived from the same two consecutive time
intervals,

4Ti Ti+1

(Ti + Ti+1)
2 . (9.134)

The statistic in (9.132) is the geometric mean, whereas Shinomoto’s Lv is the arith-
metic mean. From the point of the efficiency of estimation, S is theoretically the best
but Lv may be more robust.

Remarks

The Neyman–Scott problem is an interesting estimation problem. It looks simple,
but it is very difficult to obtain an optimal solution. Statisticians have struggled with
this problem for many years, searching for the optimal solution. In 1984, when Sir
David Cox visited Japan and talked about this problem as one of the interesting
unsolved problems. I thought it a good challenge for information geometry. It would
be wonderful if information geometry could provide a good answer to it.

It is related to a more general semiparametric problem. Since we need a function
space of infinite dimensions, it is difficult to construct a mathematically rigorous
theory. Bickel et al. (1994) established a rigorous theory of semiparametric estimation
by using functional analysis. Information geometry could be more transparent in
understanding the structure of the Neyman–Scott problem. We were successful in
obtaining a complete set of the estimating functions.

The information-geometric theory is useful, even though the rigorous mathemati-
cal foundation is missing. It can solve many famous Neyman–Scott problems. When
my official retirement time from the University of Tokyo was approaching, I thought
that the results should be publicised even though they include mathematical flaw. So
we submitted a paper to Bernoulli. The reviewers pointed out the lack of mathemat-
ical justification in the function space. However, the editor Ole Barndorff-Nielsen
considered that this was an interesting and useful paper even without rigorous justifi-
cation being given. So he decided that it was acceptable in the spirit of experimental
mathematics, provided that the Theorem–Proof style of statements was replaced by
the Proposition and Outline of Proof style.

We did not have many good examples at that time. But later, we found many
examples, including neural spike analysis and independent component analysis, the
latter of which will be shown in Chap. 13.

http://dx.doi.org/10.1007/978-4-431-55978-8_13


Chapter 10
Linear Systems and Time Series

A time series is a sequence of random variables xt , t = . . . ,−1, 0, 1, 2, . . ., which
appears as a function of time. The present chapter deals with an ergodic time series
which is generated by a linear system when white noise is applied to its input. We
study the geometrical structure of the manifold of the time series. One may identify
a time series with a linear system to generate it. Then, the geometry of the time series
is identified with the geometry of linear systems, which is important for studying
problems of control. For the sake of simplicity, we study only stable systems of
discrete time, having one–input and one–output, but generalization is not difficult in
principle. The set of all time series has infinite-dimensional degrees of freedom, so
our treatment is intuitive and not mathematically rigorous, although it is well-founded
in the case of finite-dimensional systems and related time series.

10.1 Stationary Time Series and Linear System

Let us consider a time series {xt }, where t denotes discrete time, t = 0,±1,±2, . . ..
White Gaussian noise {εt } is one of the simplest, which is composed of independent
Gaussian random variables with mean 0 and variance 1, so that

E [εtεt ′ ] = 0, t �= t ′, E
[
ε2

t

] = 1. (10.1)

We assume that the mean of xt is equal to 0. A time series is stationary when the
probability of {xt } is the same as its time-shifted version {xt+τ } for any τ . More
strongly, we consider an ergodic time series.

Ergodic Theorem: For an ergodic time series {xt }, the temporal average of a function
f (xt ) of xt converges to the ensemble average with probability 1,

© Springer Japan 2016
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linear systemt 2 1 xt x2x1

Fig. 10.1 Linear system and generated time series

lim
T →∞

1

(2T + 1)

T∑
i=−T

f (xi ) = E [ f (xt )] . (10.2)

We consider a discrete time linear system, which transforms an input time series
into an output time series linearly (Fig. 10.1). When the input is white Gaussian {εt },
the output {xt } is written as a linear combination of inputs,

xt =
∞∑

i=0

hiεt−i . (10.3)

A system is characterized by the sequence of parameters,

h = (h0, h1, h2, . . .) , (10.4)

called the impulse responses of the system. It is assumed that

∑
h2

i < ∞, (10.5)

because

E
[
x2

t

] =
∞∑

i=0

h2
i . (10.6)

The output series is stationary when the input is.
We introduce a time-shift operator z by

zεt = εt+1, z−1εt = εt−1. (10.7)

Then, (10.3) is written as

xt =
∞∑

i=0

hi z
−iεt . (10.8)

By defining

H(z) =
∞∑

i=0

hi z
−i , (10.9)

the output is written as
xt = H(z)εt . (10.10)
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H(z) is called the transfer function of the system when it is considered as a function
of a complex number z, rather than the time shift operator. We assume that H(z) is
analytic in the region |z| ≥ 1.

We define the Fourier transform of an ergodic time series {xt } in the wide sense by

X (ω) = lim
T →∞

1√
2T

T∑
t=−T

xt e
−iωt . (10.11)

Then, X (ω) is a complex-valued random function of frequency ω. Its absolute value

S(ω) = |X (ω)|2 (10.12)

is called the power spectrum and is a deterministic function of ω, but the phase of
X (ω) is random, uniformly distributed over [−π,π]. We assume

∫ π

−π

|log S(ω)|2 dω < ∞. (10.13)

The power spectrum of {xt } is written using the transfer function as

S(ω) = ∣∣H (eiω
)∣∣2 . (10.14)

Conversely, given a time series {xt } having power spectrum S(ω), we want to identify
a system H(z). Such a system exists but is not unique. When H(z) �= 0 outside the
unit circle of z (that is |z| > 1), such a system is uniquely determined. It is a system
of minimal phase. Under this condition, there is one-to-one correspondence among
the set of ergodic time series, the set of power spectra S(ω) and the set of transfer
functions H(z). They form an infinite-dimensional manifold L . We will show their
coordinates later.

10.2 Typical Finite-Dimensional Manifolds of Time Series

We give typical examples of finite-dimensional systems or time series.

1. AR model
An auto-regressive (AR) model is a time series generated from white noise {εt } by

a0xt = −
p∑

i=1

ai xt−i + εt , a0 �= 0. (10.15)
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This is an AR model of degree p, denoted by AR(p), where xt is a linear combination
(weighted sum) of past p values xt−1, . . . , xt−p added to by a new Gaussian noise εt

called innovation. A system is specified by p + 1 parameters a = (a0, a1, . . . , ap
)
.

The transfer function is

H(z) = 1∑p
i=0 ai z−i

(10.16)

and the power spectrum is

S(ω; a) =
∣∣∣∣∣

p∑
t=0

at e
iωt

∣∣∣∣∣
−2

. (10.17)

2. MA model
A moving-average (MA) model of degree q is a time series generated from white
noise by

xt =
q∑

i=1

biεt−i , (10.18)

where b = (
b1, . . . , bq

)
are the parameters. The present xt is given by a weighted

average of past q noise values. Its transfer function and power spectrum are

H(z) =
q∑

i=1

bi z
−i , (10.19)

S(ω) =
∣∣∣
∑

bt e
iωt
∣∣∣
2
, (10.20)

respectively.

3. ARMA model
An ARMA model of degrees (p, q) is the concatenation of AR and MA models,
given by

xt = −
p∑

i=0

ai xt−i +
q∑

i=1

biεt−i . (10.21)

Its transfer function and power spectrum are, respectively, given by

H(z) =
∑q

i=1 bi z−i

∑p
i=0 ai z−i

, (10.22)

S(ω; a, b) =
∣∣∣∣
∑

bt eiωt

∑
at eiωt

∣∣∣∣
2

. (10.23)
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The above three are of frequent use in time series analysis. The transfer functions
are rational functions of z−1.

A continuous-time version of a linear system is used in control systems theory,
where time t is continuous and the time-shift operator z is replaced by differential
operator s = d/dt . The input–output relation of a system is described by

x(t) = H(s)u(t) (10.24)

for input u(t). Information geometry gives a similar theory to it.

10.3 Dual Geometry of System Manifold

We introduce a Riemannian metric and dually flat affine connections to the manifold
L of linear systems. Since L is infinite-dimensional, our theory is intuitive. The
Fourier transform X (ω) of {xt } gives complex-valued Gaussian random variables
indexed by frequency ω. We can prove that X (ω) and X

(
ω′) are independent when

ω �= ω′ so that we have

E
[∣∣X (ω)X

(
ω′)∣∣] =

{
S(ω), ω′ = ω,

0, ω′ �= ω.
(10.25)

For complex random variable X (ω) of (10.11), the phase is uniformly distributed.
Therefore, we may write its probability density as

p(X; S) ≈ exp

{
−1

2

∫ π

−π

|X (ω)|2
S(ω)

dω − ψ(S)

}
. (10.26)

This is an exponential family, where random variables are X (ω) and the natural
parameter indexed by ω is

θ(ω) = 1

S(ω)
. (10.27)

This is e-flat coordinates and the expectation parameter is

η(ω) = −1

2
E
[|X (ω)|2] = −1

2
S(ω), (10.28)

which is m-flat coordinates. We rewrite the probability density in the form

p(X; θ) = exp

{
−1

2

∫
θ(ω) |X (ω)|2 dω − ψ(θ)

}
. (10.29)
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Two dually coupled potential functions are

ψ(θ) = 1

2

∫
log {−θ(ω)} dω − π

2
= 1

2

∫
log S(ω)dω − π

2
, (10.30)

ϕ(η) = −1

2

∫
log {−2η(ω)} dω − π

2
= −1

2

∫
log S(ω)dω − π

2
(10.31)

and they satisfy

ψ(θ) + ϕ(η) −
∫

θ(ω)η(ω)dω = 0. (10.32)

The Riemannian metric is calculated from (10.30) by differentiation,

g
(
ω,ω′) = ∂2

∂θ(ω)∂θ (ω′)
ψ(θ), (10.33)

so that we have

g
(
ω,ω′) =

{ 1

2
S2(ω), ω′ = ω,

0, ω′ �= ω.
(10.34)

This is diagonal and hence the squared length of deviation δθ(ω) is written as

‖δθ(ω)‖2 = 1

2

∫
S2(ω) {δθ(ω)}2 dω, (10.35)

or in terms S(ω)

‖δS(ω)‖2 = 1

2

∫ {δS(ω)}2

S2(ω)
dω = 1

2

∫
{δ log S(ω)}2 dω. (10.36)

Hence the metric is Euclidean.
The KL-divergence between two systems is written, using their power spectra,

as

K L [S1 : S2] = D−1 [S1 : S2] = 1

2π

∫ π

−π

(
S1

S2
− 1 − log

S1

S2

)
dω. (10.37)

The Shannon entropy is given by

HS = 1

4π

∫
log S(ω)dω + 1

2
log(2πe). (10.38)

We expand the e-affine coordinates S−1(ω) in Fourier series as

S−1(ω) =
∞∑

t=0

rt et (ω) (10.39)
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and m-affine coordinates S(ω) as

S(ω) =
∞∑

t=0

r∗
t et (ω), (10.40)

where the basis functions are sinusoidal,

e0(ω) = 1, et (ω) = 2 cos ωt, t = 1, 2, . . . . (10.41)

Since the resultant coefficients {rt } and
{
r∗

t

}
are linear transformations of θ(ω) and

η(ω), respectively, we can use them as new θ- and η-coordinates.
It is known that the coefficients r∗

t are expressed as

r∗
t = E

[
xs xs−t

]
, (10.42)

which are called the auto-correlation coefficients. Hence, the m-coordinates are the
auto-correlation coefficients.

The inverse system of H(z) is H−1(z), which is obtained by reversing the input
and the output. Its power spectrum is S−1(ω). Hence, rt are the auto-correlation
coefficients of the inverse system. They are called the inverse auto-correlations. The
inverse auto-correlations form e-flat coordinate systems.

It is noteworthy that rt and r∗
s are orthogonal,

〈et , e∗
s 〉 = 0, (10.43)

where et is the tangent vector of rt coordinate axis and e∗
s is that of r∗

s axis. This implies
that rs, s > k are parameters which are orthogonal to the auto-correlation coefficients
r∗

1 , . . . , r∗
k . Hence, they represent directions orthogonal to the auto-correlations up

to k.
It is easy to introduce the α-connection to L by using the cubic tensor

T
(
ω,ω′,ω′′) = ∂3

∂θ(ω)∂θ (ω′) ∂θ (ω′′)
ψ(θ) (10.44)

We can prove the following theorem.

Theorem 10.1 L is dually flat for any α, having the Euclidean metric. The α-
divergence is given by

D(α) (S1‖S2) =

⎧
⎪⎨
⎪⎩

1

2πα2

∫ {(
S2

S1

)α

− 1 − α log
S2

S1

}
dω, (α �= 0),

1

4π

∫
(log S2 − log S1)

2 dω, (α = 0).

(10.45)
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To prove the theorem, we introduce the α-representation of the power spectrum as

R(α)(ω) =
{− 1

α
S(ω)−α, (α �= 0),

log S(ω), (α = 0).
(10.46)

Then, its Fourier coefficients are proved to be the α-flat coordinates. The theorem
shows that L is like the manifold Rn

+ of positive measure rather than the manifold
Sn of probability distributions.

We have two dually coupled affine coordinate systems

r = (r0, r1, r2, . . .) , (10.47)

r∗ = (
r∗

0 , r∗
1 , r∗

2 , . . .
)
. (10.48)

The AR model of degree p, AR(p), is characterized by

r = (r p; 0, . . . 0
)
, (10.49)

where r p = (r0, r1, . . . , rp
)
. It is defined by the linear constraints

rp+1 = rp+2 = · · · = 0 (10.50)

in the e-coordinates. Hence, it is an e-flat submanifold. Moreover, the families of all
AR models of various degrees form a hierarchical system,

AR(0) ⊂ AR(1) ⊂ AR(2) ⊂ · · · . (10.51)

The white noise S(ω) = 1 belongs to AR(0), having the coordinates r =
(1, 0, 0, . . .).

The M A model of degree q, M A(q), is characterized by

r∗ = (r∗
q; 0, . . . , 0

)
, (10.52)

where r∗
q = (r∗

0 , r∗
1 , . . . , r∗

q

)
. It is defined by

r∗
q+1 = r∗

q+2 = . . . 0 (10.53)

in the m-coordinate system. Hence, it is an m-flat submanifold and the MA models
of various degrees form a hierarchical system

M A(0) ⊂ M A(1) ⊂ M A(2) ⊂ · · · . (10.54)
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10.4 Geometry of AR, MA and ARMA Models

AR model: An AR model of degree p, AR(p), is a finite-dimensional model deter-
mined by a in (10.15). By expanding the inverse of the its power spectrum S(ω; a),
we have

S−1(ω; a) =
p∑

t=0

rt et (ω). (10.55)

The m-affine coordinates of AR(p) are the auto-correlation coefficients r =(
r0, r1, . . . , rp

)
. However, the higher-order coefficients rp+1, rp+2, . . . are not 0,

although they are not free but determined by r . Given a system with power spectrum
S(ω) having auto-correlations r0, r1, r2, . . ., we consider the system in AR(p) of
which the auto-correlations are the same as S(ω) up to r1, . . . , rp and its higher-
degree auto-correlations rp+1, . . . are 0. It is called the p-th order stochastic realiza-
tion of S(ω). We denote its power spectrum by S AR

p (ω). The set of systems having
the same auto-correlations up to r1, . . . , rp form an m-flat submanifold, because they
have the same values in the first p m-coordinates but the others are free. We denote
it by Mp(r). The S AR

p (ω) is the intersection of the m-flat submanifold Mp(r) and the
submanifold AR(p). The two submanifolds are orthogonal. Hence, S AR

p (ω) is given
by the m-projection of S(ω) to AR(p). See Fig. 10.2.

Let S0(ω) be white noise given by

S0(ω) = 1. (10.56)

It belongs to AR(p) for any p. From the Pythagorean theorem, we have

DK L [S : S0] = DK L
[
S : S AR

p

]+ DK L
[
S AR

p : S0
]
. (10.57)

The stochastic realization is characterized by maximization of entropy.

Fig. 10.2 Stochastic
realization of S(ω) up to
p-th order auto-correlations
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Theorem 10.2 (Maximum Entropy) The stochastic realization S AR
p (ω) is the one

that maximizes entropy among all systems having the same r = (r1, . . . , rp
)
.

Proof From (10.38), we have

DK L [S(ω) : S0(ω)] = −2HS(S) + log(2πe) + c0 − 1. (10.58)

From relation (10.57), we see that S AR
p is the minimizer of DK L

[
S̃ : S0

]
for all

S̃ ∈ Mp(r). However, DK L

[
S̃ : S0

]
is related to the negative of entropy HS by

DK L [S : S0(ω)] = DK L
[
S : S∗

p

]+ DK L
[
S∗

p : S0
] = −2HS + const. (10.59)

Hence, S AR
p is the maximizer of entropy among all systems having the same

r1, . . . , rp. �

MA model: Similar discussions hold for M A(q) families. They are m-flat and
M A(q) is defined by the constraint

rq+1 = rq+2 = · · · = 0. (10.60)

We can define the dual stochastic realization of a system S(ω) in M A(q), that is the
system in AR(q) of which the inverse auto-correlations r∗

0 , r∗
1 , . . . , r∗

q are the same
as the given S(ω) up to q. It is interesting to see the following minimum entropy
theorem.

Theorem 10.3 (Minimum Entropy) The dual stochastic realization SM A
q (ω) is

the one that minimizes entropy among all systems having the same inverse auto-
covariances r∗

1 , . . . , r∗
q .

Proof We have

DK L [S0 : S] = DK L
[
S0 : SM A

q

]+ DK L
[
SM A

q : S
]

(10.61)

from the Pythagorean theorem. Now we see

DK L [S0 : S] = HS + const. (10.62)

Hence minimizing DK L [S0 : S] is equivalent to minimizing entropy, proving the
theorem. �

One may say that the Pythagorean relation or the projection theorem is more fun-
damental than the maximum entropy principle.

ARMA model: The ARMA model of degrees p, q is given by (10.21). This is a
finite-dimensional subset of L . They form a doubly hierarchical system. However,
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a

b

.

Fig. 10.3 Singularity of (1, 1) ARMA model

they are neither e-flat nor m-flat. Moreover, the set is not a submanifold in the
mathematical sense, because it includes singular points. We show this by a simple
example. Consider ARM A(1, 1), which is described by

xt = axt−1 + εt + bεt−1. (10.63)

Its transfer function is

H(z) = 1 + bz−1

1 + az−1
. (10.64)

The parameter (a, b) plays the role of coordinates, where |a| < 1, |b| < 1 should be
satisfied because of the stability of the system. However, on the diagonal line a = b,
all the systems are equivalent, because the nominator and the denominator of (10.64)
cancel one another out. Therefore, all the systems satisfying a = b are the same,
simply given by H(z) = 1.

We reduce the equivalent systems to one point. Then, as is shown in Fig. 10.3,
the set AR(1, 1) consists of two subsets (submanifolds) connected by one singular
point. This type of reduction happens in any ARM A(p, q) when the denominator
and nominator of (10.22) include the same factor which cancels one another out.
This fact is pointed out by Brockett (1976). We deal with such singularity later in
Chap. 12 where multilayer perceptrons are discussed.

Remarks

Linear systems and time series have long histories of research, having highly orga-
nized structures in their fields. Therefore, we only touch upon them from the infor-
mation geometry point of view, not explaining details. Since we have used Gaussian
white noise as inputs, our study includes only systems of minimal phase. We need

http://dx.doi.org/10.1007/978-4-431-55978-8_12
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non-Gaussian white noise to overcome this difficulty. Finite-dimensional time series
and systems are well-founded mathematically, but if we want to treat infinite-
dimensional cases, we suffer from a lack of rigorous mathematical foundation. The
difficulty is the same as in the case of a manifold of infinite-dimensional probability
distributions. The present study will be a starting point for investigating information
geometry of systems. See a trial by Ohara and Amari (1994).

There is a statistical problem of estimation from observations of a finite size
sample x1, x2, . . . , xT of time series. We can identify the model which generates the
sample by using an adequate degree of AR, MA and ARMA or many other models.
The sample is not iid, but we can construct a similar theory of estimation. A higher-
order asymptotic theory has been constructed. See Amari and Nagaoka (2000) and
Taniguchi (1991) for more details. An AR model is an e-flat manifold, provided we
consider time series xt of infinite length t = 0,±1,±2, . . .. However, it is a curved
exponential family when x0, x1, . . . , xT only are observed, because of the effect of
initial and final xt ’s. See Ravishanker et al. (1990) and Martin (2000) for applications
and Choi and Mullhaupt (2015) for recent developments using Khälerian geometry.

It is interesting to see that an ARMA model includes singularities. Brockett (1976)
pointed out that the set of linear systems of which transfer functions are rational
functions, nominators with degree p, and denominators with degree q, are split in
a number of disjoint components. This is a topological structure of the set of linear
systems. When cancellation occurs, the degrees of the nominator and denominator
decrease. R. Brockett excluded such low-degree systems from the set. However,
a lower degree system is a special case of a higher degree system. Therefore, if
we consider rational systems having a nominator degree lower or equal to p and a
denominator degree lower than or equal to q, the set splits into multiple components
where they are connected by singular points of reduced degrees.

We have considered regular statistical models, which form a manifold. However,
not a few important statistical models include this type of singularities. The behavior
of an estimator when the true model lies at or close to singularities is interesting.
See Fukumizu and Kuriki (2004). We study multilayer perceptrons in Chap. 12,
considering how the singularity affects the dynamics of learning.

We did not study multi-input and multi-output systems. The manifold of linear
systems having n inputs and m outputs is a Grassman manifold. This is another
interesting subject of research from the geometrical point of view.

A Markov chain generates an infinite series of states

{xt } , t = 0, ±1, ±2, . . . , (10.65)

where xt is a state from which xt+1 is determined stochastically by a state transition
matrix p (xt+1 |xt ). An AR model is regarded as a Markov chain. A Markov chain is
an exponential family, so it is dually flat. We can construct a similar geometrical the-
ory (Amari 2001). However, if we consider a finite range 0 ≤ t ≤ T of observations,
a Markov chain {xt }, 0 ≤ t ≤ T , is a curved exponential family because of the effects

http://dx.doi.org/10.1007/978-4-431-55978-8_12
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of initial and final values. Its e-curvature decreases in the order of 1/T , converging
to 0 as T tends to infinity. See Amari (2001), and Hayashi and Watanabe (2014) for
information geometry of Markov chains. Takeuchi (2014) used the e-curvature to
evaluate the asymptotic error of estimation, which is also related to the minimum
regret of a Markov chain (Takeuchi et al. 2013).
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Chapter 11
Machine Learning

11.1 Clustering Patterns

Patterns are categorized into a number of classes. Pattern recognition is the problem
of identifying the class to which a given pattern belongs. When a divergence is
defined in the manifold of patterns, classification is brought into effect by using the
divergence. We begin with the problem of obtaining a representative of a cluster of
patterns, called the center of the cluster. When patterns are categorized into clusters,
pattern recognition determines the cluster to which a given pattern is supposed to
belong, based on the closeness due to the divergence.

Another problem is to divide a non-labeled aggregate of patterns into a set of clus-
ters. This is the problem of clustering. A generalized k-means method is presented by
using a divergence. The entire pattern space is divided into regions based on repre-
sentatives of clusters. Such a division is called a divergence-based Voronoi diagram.
When patterns are generated randomly subject to a probability distribution depend-
ing on each class, we have a stochastic version of the above problems. Information
geometry is useful for understanding these problems in terms of divergence.

11.1.1 Pattern Space and Divergence

Let us consider patterns represented by vector x. They belong to a pattern manifold
X . We study the case where a divergence D

[
x : x′] is defined between two patterns

x and x′. In a Euclidean space, we have

D
[
x : x′] = 1

2

∑(
xi − x ′

i

)2
, (11.1)
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which is a half of the square of the Euclidean distance. We consider a general
dually flat manifold induced by a Bregman divergence. For the sake of notational
convenience, we suppose that pattern x is represented in the dual affine coordinate
system, so that it is represented by the η-coordinates as

η = x. (11.2)

Then, we use the dual divergence between two patterns x and x′

Dφ

[
x : x′] = φ(x) − φ

(
x′)− ∇φ

(
x′) · (x − x′) , (11.3)

which is constructed from a dual convex function φ.
We will later use the primal affine coordinate system θ given by the Legendre

transformation

θ = ∇φ(η) = ∂

∂η
φ(η). (11.4)

The primal convex function ψ(θ) is given by the Legendre relation

ψ(θ) = −φ(η) + θ · η, (11.5)

η = ∇ψ(θ). (11.6)

11.1.2 Center of Cluster

Let C be a cluster consisting of k patterns x1, . . . , xk . We search for the representative
of C which should be as close to all the members of C as possible (Fig. 11.1). To
obtain such a representative, we calculate the average of the dual divergences from
the members of the cluster to a point η, as

Dφ[C : η] = 1

k

∑

xi ∈C

Dφ [xi : η] . (11.7)

Fig. 11.1 φ-center of
cluster C . .
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The minimizer of (11.7) is called the φ-center of cluster C due to the divergence
Dφ. If we use the θ-coordinates, this is written as

Dψ[θ : C] = 1

k

∑
Dψ [θ : θi ] , (11.8)

where θi is the θ-coordinates of ηi . The following theorem is due to Banerjee et al.
(2005).

Theorem 11.1 The φ-center of cluster C is given by

ηC = 1

k

∑
xi (11.9)

for any φ.

Proof By differentiating (11.7) with respect to η and using (11.3), we have

∂

∂η
D[C : η] = 1

k

∑
G−1(η) (xi − η) , (11.10)

where
G−1(η) = ∇∇φ(η) (11.11)

is a positive-definite matrix. Hence, the minimizer is given by (11.9). �

We can generalize the situation that a probability distribution p(x) of x is
given instead of cluster C . Then the center of the distribution is defined by the
minimizer of

Dφ[p : η] =
∫

Dφ[x : η]p(x)dx. (11.12)

The center is merely the expectation of x for any φ,

η p =
∫

x p(x)dx. (11.13)

11.1.3 k-Means: Clustering Algorithm

Assume N points D = {x1, . . . , xN } are given, and we categorize them into m
clusters such that a cluster includes mutually close points. Let C1, . . . , Cm be clus-
ters to be formed and let ηh, h = 1, . . . , m, be their centers. It is required that a
point xi belongs to cluster Ch when the divergence Dφ

[
xi : ηh

]
is the smallest of

Dφ

[
x : η1

]
, . . . , Dφ

[
x : ηm

]
. That is, ηh is the closest cluster center from xi ,

h = arg min
j

Dφ

[
xi : η j

]
. (11.14)
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Let
Dφ[C : D] =

∑

h

∑

xi ∈Ch

Dφ

[
xi : ηh

]
(11.15)

be the total sum of the divergences from each point xi to the cluster center ηh it
belongs to. The best clustering with respect to the φ-divergence is the one that min-
imizes (11.15). We can apply the well-known k-means algorithm, which is usually
done by using the Euclidean distance. It is easy to extend it to the general case of a
dually flat divergence, because the cluster center is given by the arithmetic mean in
the dual coordinates. See Banerjee et al. (2005).

Clustering Algorithm (k-means method)

1. Initial Step: Choose m cluster centers η1, . . . ,ηm arbitrarily such that they are
all different.

2. Classification Step: For each xi , calculate the φ-divergences to the m cluster
centers. Assign xi to cluster Ch that minimizes the φ-divergence,

xi ∈ Ch : Dφ

[
xi : ηh

] = min
j

{
Dφ

[
xi : η j

]}
. (11.16)

Thus, new clusters C1, . . . , Cm are formed.
3. Renewal Step: Calculate the φ-centers of the renewed clusters, obtaining new

cluster centers η1, . . . ,ηm .
4. Termination Step: Repeat the above procedures until convergence.

It is known that the procedures terminate within a finite number of steps, giving
a good clustering result, although there is no guarantee that it is optimal. The k-
means++ method was proposed for choosing good initial values of ηi by Arthur and
Vassilvitshii (2007).

11.1.4 Voronoi Diagram

Given a point x, we need to find the cluster it belongs to. This is information retrieval
or pattern classification to decide which category it belongs to. A subset Rh of X is
called the region of Ch when it is decided that pattern x ∈ Rh belongs to Ch . The
entire X is partitioned into m regions R1, . . . , Rm .

We consider a simple case consisting of two clusters C1 and C2 for an explanation.
The entire X is divided into two regions R1 and R2. For x ∈ R1,

Dφ

[
x : η1

] ≤ Dφ

[
x : η2

]
. (11.17)

Therefore, the two regions are separated by the hypersurface B12 that is the boundary
of the regions,

B12 = {
x
∣∣ Dφ

[
x : η1

] = Dφ

[
x : η2

]}
. (11.18)



11.1 Clustering Patterns 235

Theorem 11.2 The hypersurface separating two decision regions is the geodesic
hyperplane orthogonal to the dual geodesic connecting the two φ-centers of the
clusters at the midpoint of the dual geodesic.

Proof Connect two φ-centers η1 and η2 by the dual geodesic

η(t) = (1 − t)η1 + tη2. (11.19)

The midpoint η12 is defined by

Dφ

[
η12 : η1

] = Dφ

[
η12 : η2

]
. (11.20)

Let B12 be the geodesic hypersurface (that is the linear subspace in the θ coordinates)
passing through η12 and orthogonal to the dual geodesic (Fig. 11.2). Then, due to the
Pythagorean theorem, any point x on the hyperplane satisfies

Dφ

[
x : ηi

] = Dφ

[
x : η12

]+ Dφ

[
η12 : ηi

]
, i = 1, 2. (11.21)

Hence, we have
Dφ

[
x : η1

] = Dφ

[
x : η2

]
. (11.22)

�

The boundary surface is linear in the θ-coordinates but is nonlinear in the η-
coordinates. When the divergence is the square of the Euclidean distance, η- and
θ-coordinates are the same, so that the boundary is linear in the η-coordinates. This
is a special case.

When there are m clusters C1, . . . , Cm, X is partitioned into m regions R1, . . . , Rm ,
where the boundary of Ri and R j is the geodesic hypersurface satisfying

Bi j = {
x
∣∣ Dφ

[
x : ηi

] = Dφ

[
x : η j

]}
. (11.23)

Such a partition is called the Voronoi diagram due to the φ-divergence (Fig. 11.3).
See Nielsen and Nock (2014), Nock and Nielsen (2009), Boissonnat et al. (2010),
etc. for details.

Fig. 11.2 Boundary of two
cluster regions
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Fig. 11.3 Voronoi diagram
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11.1.5 Stochastic Version of Classification and Clustering

11.1.5.1 Probability Distribution Associated with Category

Let us consider a cluster Ch of which φ-center is ηh . We generate a probability
distribution

ph(x) = exp {φ(x)} exp
{−Dφ

[
x : ηh

]}
. (11.24)

It is centered at ηh and the probability density of x decreases exponentially as the
divergence between x and ηh increases.

As we have shown in Sect. 2.6, it is an exponential family (Banerjee et al. 2005).

Theorem 11.3 The cluster Ch of which the center is ηh defines a probability distri-
bution of patterns x, which is an exponential family,

ph(x) = exp {θh · x − ψ (θh)} (11.25)

with respect to the underlying measure

dμ(x) = exp {φ(x)} dx. (11.26)

The natural parameter θh of the distribution is the Legendre dual of ηh.

11.1.5.2 Soft Clustering Algorithm

We consider a mixture of probability distributions of exponential families,

p(x; ξ) =
∑

h

πh exp {θh · x − ψ (θh)} , (11.27)

where πh are the prior probabilities that x is generated from category Ch and is the
unknown parameters which we estimate from a number of observations x1, . . . , xN .
Here, the parameter vector is

http://dx.doi.org/10.1007/978-4-431-55978-8_2
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ξ = (π1, . . . ,πm ; θ1, . . . θm) . (11.28)

The maximum likelihood estimator is given by

ξ̂ = arg max
N∑

i=1

log p (xi , ξ) . (11.29)

Before analyzing the MLE, we consider the conditional distribution of categories
given x,

p (Ch |x ) = πh p (x,θh)∑
πh p (x,θh)

. (11.30)

For pattern x, the above probabilities show the posterior probabilities of the cate-
gories. This is a stochastic classification or soft classification which assigns x to
categories according to the posterior probabilities. When we pick up the category
that maximizes the probability, it attains hard classification.

Since the distribution (11.29) is a mixture of exponential families, we can use the
EM algorithm for estimating ξ. The M-step is usually computationally heavy, but in
the present case, it is simple because of (11.13).

Soft Clustering Algorithm (soft k-means)

1. Initial Step: Choose prior probabilities πh and different cluster centers ηh, h =
1, . . . , m, arbitrarily.

2. Classification Step: For each xi , calculate the conditional probabilities p (Ch|x)

by using the current πh and ηh .
3. Renewal Step: By using the conditional probabilities, the new prior πh of class

Ch is calculated as

πh = 1

N

∑

i

p (Ch |xi ) . (11.31)

Calculate the new cluster center by

ηh = 1

N

N∑

i=1

xi p (Ch |xi ) . (11.32)

4. Termination: Repeat the above procedures until convergence.

The Voronoi diagram is defined in a similar way. When we use hard classification
based on the posteriori probabilities, the boundary surface of two categories Ci and
C j is given by

p (Ci |x) = p
(
C j |x

)
. (11.33)

Theorem 11.4 The boundary of two decision regions is the geodesic hypersurface
that is orthogonal to the dual geodesic connecting two cluster centers and passes
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through it at the point satisfying

πi Dφ

[
x
∣∣ηi

] = π j Dφ

[
x
∣∣η j

]
. (11.34)

11.1.6 Robust Cluster Center

When a cluster C composed of x1, . . . , xk is given, we can calculate the φ-center of
cluster by (11.9). Assume that a new point x∗ is added to C that might be far from
the others. By adding this point, the cluster center might deviate largely. If this new
point is an outlier, for example given by mistake, it is not desirable that the cluster
center is affected heavily by this point. A robust clustering reduces the undesirable
influence due to outliers.

More formally, we define the influence function of an outlier x∗. Let η̄ be the
center of cluster C , and let η̄∗ be the center of C∗ in which x∗ is newly added. We
assume that k is large so that the influence of each xi is only of the order 1/k. Let
us denote the change of η̄ to η̄∗ by δη and define z (x∗) by

δη = η̄∗ − η̄ = 1

k
z
(
x∗) (11.35)

as a function of x∗. It is called an influence function. When

∣∣z
(
x∗)∣∣ < c (11.36)

holds for a constant c, i.e., |z (x∗)| is bounded, the cluster center is robust, because
even if an infinitely large x∗ is merged in C , its effect is bounded and is very small
when k is large. A robust center does not seriously suffer from contamination by
outliers.

11.1.6.1 Total Bregman Divergence

The Bregman divergence Dφ

[
η′ : η

]
is measured by the height φ

(
η′) at η′ from

the tangent hypersurface of φ(η) drawn at η. This is the vertical length of point(
η′,φ

(
η′)) to the tangent hypersurface (Fig. 11.4a). One may consider the orthogonal

projection of
(
η′,φ

(
η′)) to the tangent hypersurface (Fig. 11.4b). It defines another

measure of divergence from η′ to η. This idea, hinted at in the total least squares
in regression, was proposed by Vemuri et al. (2011) and called the total Bregman
divergence, denoted as tBD.

The length of the orthogonal projection is easily calculated and given by

tBDφ

[
η′ : η

] = 1

w (η′)
Dφ

[
η′ : η

]
, (11.37)
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where
w
(
η′) =

√
1 + ‖∇φ (η′) ‖2. (11.38)

It is invariant under orthogonal transformations of (η,φ)-space. Since the scale of
φ(η) is arbitrary, we introduce a free parameter c which changes φ(η) to cφ(η) and
define tBD by

tBDφ

[
η′ : η

] = Dφ

[
η′ : η

]

√
1 + c2‖∇φ (η′) ‖2

. (11.39)

This is a conformal transformation of Bregman divergence. The free parameter c
controls the degree of conformal modification.

11.1.6.2 Total BD is Robust

The following is one of the remarkable characteristics of tBD, proved in Liu et al.
(2012).

Theorem 11.5 The tBD φ-center of a cluster is robust.

Proof When an outlier x∗ is newly added to C of which the previous center is η̄, the
new center η̄∗ under tBD is the minimizer of

1

k + 1

∑ Dφ

[
xi : η̄∗]

w (xi )
+ 1

k + 1

Dφ

[
x∗ : η̄∗]

w (x∗)
. (11.40)

The influence function z (x∗) is defined by (11.35). Assuming k is large, we expand
the new center in the Taylor series, obtaining

z
(
x∗) = 1

w(x∗)
G−1

{∇φ(η̄) − ∇φ
(
x∗)} , (11.41)



240 11 Machine Learning

where

G = 1

N

∑ 1

w (xi )
∇∇φ (η̄) . (11.42)

Since
1

w(x∗)
∇φ(x∗) = ∇φ (x∗)

√
1 + c2∇φ (x∗)

(11.43)

is bounded for any large x∗, z (x∗) is bounded, and hence the tBD φ-center is
robust. �

Vemuri et al. (2011) used tBD to analyze MRI images, obtaining good results.
Liu et al. (2012) applied the tBD to the problem of image retrieval, obtaining a state-
of-the-art result. Conformal transformations of a Bregman divergence are further
developed in Nock et al. (2015).

11.1.7 Asymptotic Evaluation of Error Probability in Pattern
Recognition: Chernoff Information

We consider two probability distributions

pi (x) = pi (x,θi ) = exp {θi · x − ψ(θ)} , i = 1, 2 (11.44)

in an exponential family. Here, we use θ-coordinates related to ψ(θ) and the KL-
divergence Dψ = DK L instead of the previous η-coordinates related to φ(η) and the
dual divergence Dφ. When N observations x1, . . . , xN are derived, all of which are
supposed to be generated from either p1(x) or p2(x), we need to decide which is
the true distribution. Let us divide the manifold in two regions R1 and R2 such that,
when the observed point

η̄ = 1

N

∑
xi (11.45)

belongs to R1 (R2), we decide that the true distribution is p1(x) (p2(x)).
When N is large, the probability that η̄ is generated from pi (x) is given, due to

the large deviation theorem in Chap. 3, by

Pi (η̄) = exp
{−N DK L

[
θ̄ : θi

]}
, (11.46)

where θ̄ is the primal coordinates of η̄. In order to minimize the probability of
misclassification, the regions Ri should be determined as

Ri = {
θ
∣
∣DK L [θ : θi ] ≤ DK L

[
θ : θ j

]}
. (11.47)

http://dx.doi.org/10.1007/978-4-431-55978-8_3
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That is, the boundary of R1 and R2 is the hypersurface satisfying

B12 = {θ |DK L [θ : θ1] = DK L [θ : θ2] } . (11.48)

Let us consider the e-geodesic connecting p1(x) and p2(x),

log p(x,λ) = (1 − λ) log p1(x) + λ log p2(x) − ψ(λ) (11.49)

or
θλ = (1 − λ)θ1 + λθ2 (11.50)

in the θ-coordinates. Its midpoint is defined by θλ∗ satisfying

DK L [θλ∗ : θ1] = DK L [θλ∗ : θ2] . (11.51)

Due to the Pythagorean theorem, B12 is the m-geodesic hyperplane orthogonal to the
e-geodesic, passing through it at θ∗

λ. (See Fig. 11.5.)
The midpoint λ∗ is given by the minimizer of

ψ(λ) =
∫

p1(x)λ p2(x)1−λdx, (11.52)

λ∗ = arg min
λ

ψ(λ). (11.53)

The asymptotic error bound is hence given by

Perror = exp {−N DK L [θλ∗ : θi ]} . (11.54)

The negative exponent of error,

DK L [θλ∗ : θi ] = ψ
(
λ∗) , (11.55)

Fig. 11.5 Decision
boundary B12 and separation
midpoint θλ∗

1 1:P 2 :P
. .

B12

R1 R2

*
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is called the Chernoff information or Chernoff divergence (Chernoff 1952). This is
related to the α-divergence Dα [p1 : p2]. We have

min
λ

∫
p1(x)λ p2(x)1−λdx = 1 − max

α

1 − α2

4
Dα [p1 : p2] . (11.56)

Hence, by letting α∗ be the maximizer of
{(

1 − α2
)
/4
}

Dα [p1 : p2], we have

λ∗ = 1 + α∗

2
. (11.57)

Remark One may use a prior distribution (π1,π2) on two classes C1 and C2 in the
Bayesian standpoint. However, the asymptotic error bound does not depend on it.

11.2 Geometry of Support Vector Machine

The support vector machine (SVM) is one of the powerful learning machines for
pattern recognition and regression (Cortes and Vapnik 1995; Vapnik 1998). It embeds
pattern signals to a higher-dimensional space, even an infinite-dimensional Hilbert
space, and uses a kernel function to calculate outputs. Although the Hilbert space
is infinite-dimensional in general, the kernel trick makes it possible to work within
a finite regime, avoiding difficulties of infinitely large degrees of freedom. We do
not describe the details of the SVM, but focus only on its Riemannian structure. It is
used for modifying a given kernel to improve the performance of the machine.

11.2.1 Linear Classifier

We begin with a linear machine for classifying patterns, which is a simple perceptron.
Given input pattern x ∈ Rn , consider a linear function

f (x,w) = w · x + b (11.58)

having parameters ξ = (w, b). The machine classifies patterns into two classes C+
and C−, according to the signature of output function f (x, ξ). That is, when

f (x, ξ) > 0, (11.59)

x is classified into C+, and otherwise into C−.
Consider a set of training examples D = {x1, x2, . . . , xN } which are divided into

two classes C+ and C−. When xi ∈ C+, it is accompanied by teacher signal yi = 1,
and when xi ∈ C−, it is accompanied by yi = −1. They are linearly separable when
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there exists w and b, for which

w · x + b > 0, x ∈ C+, w · x + b < 0, x ∈ C− (11.60)

holds. When (w, b) is such a solution, (cw, cb) is also a solution for any c > 0. We
eliminate this indefiniteness of scale by imposing the constraints

|w · xi + b| ≥ 1, min
i

|w · xi + b| = 1. (11.61)

Since the Euclidean distance from point x to the separating hyperplane

w · x + b = 0 (11.62)

is

d = |w · x + b|
|w| , (11.63)

the distance from xi to the separating hyperplane is given by

di = |w · xi + b|
|w| . (11.64)

The minimum of these distances is given by

dmin = 1

|w| (11.65)

and is attained by the points xi that satisfy

yi (w · xi + b) = 1. (11.66)

We call these points xi the support vectors of the training set D and the minimal
distance the margin. There are in general a number of support vectors. See Fig. 11.6.
A good machine has a large margin. So the problem of obtaining the optimal linear
machine is to minimize

C(w) = 1

2
|w|2 (11.67)

under the constraint
yi (w · xi + b) ≥ 1. (11.68)

Let us use Lagrange multipliers α = (α1, . . . ,αN ) for solving the problem. Then,
the problem reduces to the unconstrained minimization of

L(w, b,α) = 1

2
|w|2 −

∑
αi yi (w · xi + b) . (11.69)
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Fig. 11.6 Linear classifier
and support vectors
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By differentiating it with respect to w and b and making the derivatives equal to 0,
we have ∑

i

αi yi = 0, w =
∑

i

αi yi xi . (11.70)

Substituting (11.70) in (11.69), the problem is reformulated in the dual form using
the dual variables αi :

maximize L∗(α) =
∑

αi − 1

2

∑
αiα j yi y j xi · x j (11.71)

with respect to α under the constraint

αi ≥ 0,
∑

αi yi = 0. (11.72)

Since the objective function (11.71) is a quadratic function of αi , there is a well-
known algorithm to solve it. It should be remarked that αi = 0 when xi is not a
support vector.

The optimized output function is written as

f (x,w) =
∑

αi yi xi · x + b (11.73)

in terms of the solution αi . The function is given by using only the support vectors
and the other non-support examples xi are irrelevant.

The linear output function is useful even when patterns D are not linearly separa-
ble. We use slack variables in this case. It can also be used as a regression function,
where the output y takes analog values. See textbooks about the support vector
machine.
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11.2.2 Embedding into High-Dimensional Space

Patterns are not linearly separable in many problems and a linear machine does not
work well in many cases. In overcoming this difficulty, it has been known since the
early nineteen-sixties that nonlinear embedding of patterns into a high-dimensional
space helps. Let us consider a nonlinear transformation of x ∈ Rn into a high-
dimensional space Rm (m > n) by

zi = ϕi (x), i = 1, . . . , m. (11.74)

Then pattern x is represented in Rm as

z = ϕ(x), (11.75)

where
ϕ(x) = [ϕ1(x), . . . ,ϕm(x)] . (11.76)

The classification problem is formulated in Rm by using z = ϕ(x), where the linear
classification function in Rm is written as

f (x, ξ) = w · ϕ(x) + b, ξ = (w, b). (11.77)

This was known as the Φ-function method (see Aizerman et al. 1964). The nonlinear
embedding improves the linear separability of patterns.

Consider a simple example in which patterns belonging to C+ are inside a circle
and those belonging to C− are outside the circle (see Fig. 11.7a). The patterns are
not linearly separable in R2. However, if we use the following embedding to R3,

z1 = x1, z2 = x2, z3 = x2
1 + x2

2 , (11.78)

they become linearly separable, as is seen in Fig. 11.7b.
It is expected that patterns become linearly separable when m is large. The mul-

tilayer perceptron of Rosenblatt (1961) uses random threshold logic functions in the
hidden layer for this purpose. The linear separability is assured when m is sufficiently
large. The universality of a three-layer perceptron guarantees that any function f (x)

can be approximated by a linear function after embedding, provided m is sufficiently
large.

However, we need to find good embedding functions for good pattern separation.
This is a difficult problem. Moreover, when m is large, in particular infinitely large,
calculations of embedded z = ϕ(x) are computationally difficult. It is the kernel
trick that resolves the difficulty.
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11.2.3 Kernel Method

We consider the inner product of z = ϕ(x) and z′ = ϕ
(
x′) after embedding,

K
(
x, x′) = z(x) · z

(
x′) =

∑
zi (x)zi

(
x′) . (11.79)

This is a symmetric function of x and x′. Moreover, for any coefficients c =
(c1, . . . , cm), positivity

∑
ci c j K

(
xi , x j

)
> 0 (11.80)

is guaranteed for c 	= 0, provided ϕ1(x), . . . ,ϕm(x) are linearly independent. One
may consider that K

(
x, x′) is an infinite-dimensional positive-definite matrix in

an infinite-dimensional space of z(x), where x and x′ are regarded as indices for
specifying the rows and columns of the matrix. That is, K

(
x, x′) plays the role of

K (i, j), which is a matrix specified by row i and column j .
We consider the eigenvalue problem,

∫
K
(
x, x′) ki

(
x′) dx′ = λi ki (x), (11.81)

where λ1, . . . ,λm are eigenvalues and k1(x), . . . , km(x) are corresponding eigen-
functions. Here, m can be infinite. We call K

(
x, x′) the kernel function operating

on a function k(x) as in the integral (11.81). By using the eigen-functions, the kernel
function is expanded as

K
(
x, x′) =

∑
λi ki (x)ki

(
x′) . (11.82)
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Comparing this with (11.79), we see that the embedding functions are the eigen-
functions divided by the square roots of the eigenvalues,

zi (x) = 1√
λi

ki (x). (11.83)

The optimal output function (11.73) can be written using the kernel function as

f (x,w) =
∑

αi yi K (xi , x) + b. (11.84)

This is another expression of (11.77) in terms of the kernel function, where the
embedding functions ϕ are eliminated. Therefore, even when m is infinite, we do
not need to calculate z = ϕ(x) and the kernel is sufficient to compose the optimal
output function. This is called the kernel trick. See Scholkopf (1997) and Shawe-
Taylor and Cristianini (2004).

We may start from a kernel function K
(
x, x ′), without specifying embedding

functions, provided K
(
x, x′) is positive-definite satisfying (11.80), called the Mercer

condition.
The Gaussian kernel

K
(
x, x′) = exp

{

−
∣∣x − x′∣∣2

σ2

}

(11.85)

is used frequently, where σ2 is a free parameter to be adjusted. Its eigen-functions
are

kω(x) = exp {−iω · x} (11.86)

so that the expansion of a function f (x) in terms of the eigen-functions corresponds
to the Fourier expansion.

Another kernel of frequent use is the polynomial kernel of order p defined by

K
(
x, x′) = (

x · x′ + 1
)p

. (11.87)

The eigen-functions are polynomials of x up to certain degrees and m is finite. The
kernel method can be used even when x are discrete symbols, by defining an adequate
positive-definite kernel. Therefore, it is a powerful tool in symbol processing and
bioinformatics.

11.2.4 Riemannian Metric Induced by Kernel

The kernel method is computationally tractable using a modern computer. However,
a good choice of kernel depends on the problem to be solved and no good criteria
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exist except for trial-and-error. This section considers the geometry induced by a
kernel and proposes a method to improve a given kernel (Amari and Wu 1999; Wu
and Amari 2002; Williams et al. 2005).

The original space Rn of patterns is embedded in Rm , possibly in R∞, as a
curved n-dimensional submanifold. A Riemannian metric is induced in Rn by this
embedding. Two nearby points x and x + dx are embedded to ϕ(x) and ϕ(x + dx),
respectively, and the square of their Euclidean distance in Rm is

ds2 = |ϕ(x + dx) − ϕ(x)|2 =
∑ ∂

∂xi
ϕ(x) · ∂

∂x j
ϕ(x)dxi dx j . (11.88)

Therefore, the induced Riemannian metric is given by

gi j (x) =
(

∂

∂xi
ϕ(x)

)
·
(

∂

∂x j
ϕ(x)

)
, (11.89)

which is expressed in terms of the kernel as

gi j (x) = ∂2

∂xi∂x ′
j

K
(
x, x′)∣∣

x′=x . (11.90)

The volume element at point x is given by

dV (x) =
√∣∣gi j (x)

∣∣dx1 · · · dxn, (11.91)

which shows how the volume is enlarged or contracted at around x. Since only the
support vectors play a role in the output function, we consider expanding neighbor-
hoods of the support vectors in Rm , while other parts remain as they are.

To this end, we modify the current kernel K
(
x, x′) to

K̃
(
x, x′) = σ(x)σ

(
x′) K

(
x, x ′) , (11.92)

where σ(x) represents how the volume is enlarged at around x. It should be large
near the support vectors, so

σ(x) =
∑

i

e−κi |x−x∗
i | (11.93)

was chosen in Amari and Wu (1999), Wu and Amari (2002), where x∗
i are the support

vectors and κi are adequate constants. Later,

σ(x) = exp
[−κ { f (x)}2] (11.94)

was proposed as a more natural choice (Williams et al. 2005).
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The transformation (11.92) is called the conformal transformation of a kernel.
The Riemannian metric changes to

g̃i j (x) = σ2(x)gi j (x) + σi (x)σ j (x)K (x, x)

+ σ(x)
{
σi (x)K j (x, x) + σ j (x) Ki (x, x)

}
, (11.95)

where

σi = ∂

∂xi
σ(x), Ki (x, x) = ∂

∂xi
K
(
x, x′) |x′=x . (11.96)

When
Ki (x, x) = 0, (11.97)

which is satisfied by the Gaussian kernel, we have a simplified expression

g̃i j (x) = {σ(x)}2 gi j (x) + σi (x)σ j (x)K (x, x). (11.98)

Computer simulations show that the performance of recognition is improved by
up to ten percent by a conformal transformation. This might shed light on the problem
of choosing a good kernel.

Recently, Lin and Jiang (2015) proposed another method of choosing σ(x) adap-
tively from data.

11.3 Stochastic Reasoning: Belief Propagation and CCCP
Algorithms

A graphical model specifies stochastic interactions among a number of random vari-
ables. Stochastic reasoning is a procedure to estimate the values of unobserved ran-
dom variables from those of observed variables based on its graphical structure.
Belief propagation (BP) (Pearl 1988) and convex-concave computational proce-
dure (CCCP) (Yuille 2002) are methods in frequent use to obtain good estimates in
artificial intelligence and machine learning.

The joint probability distributions of random variables in a graphical model form
an exponential family. It has a dually flat Riemannian structure, so these algorithms
are well understood from the point of view of dual geometry. The present section
studies the BP and CCCP algorithms based on the dually flat structure, based on Ikeda
et al. (2004a, b). The belief of each node about the value of its variable is propagated
through e- and m-projections to obtain a harmonized consensus in BP. It is a merit
of dual geometry that a new simplified version of CCCP is derived naturally.
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11.3.1 Graphical Model

Let us consider a set of mutually interacting random variables x1, . . . , xn . That is,
xi is a random variable of which the value is determined stochastically under the
influence of other variables

Xi = {
xi1 , xi2 , . . . , xik

}
. (11.99)

A random variable x j is called a parent of xi when it is an element of Xi . We
study joint probability distributions of x1, . . . , xn . The probability of xi is given by
the conditional probability distribution p (xi |Xi ) conditioned on the values of its
parents. We use a graph to represent the parent–child relation (Fig. 11.8). The graph
is composed of n nodes corresponding to the random variables x1, . . . , xn . There is a
branch between nodes xi and x j when x j is a parent of xi . The branches are oriented
in this case, but we consider a non-oriented graph by disregarding the direction of
a branch. This is called a graphical model of random variables. See Wainright and
Jordan (2008) and Lauritzen (1996), for example.

The joint probability distribution is written using the product of the conditional
distributions as

p (x1, . . . , xn) =
n∏

i=1

p (xi |Xi ) . (11.100)

A graphical model is also called a random Markov field. It is an extension of the
Markov chain, representing the stochastic causality.

A subgraph composed of nodes C = {
xi1 , . . . , xik

}
is called a clique when it is

a complete graph. A graph is complete when any two nodes in it are connected by a
branch. See Fig. 11.7, where {x1, x2, x3, x4} , {x4, x7} and {x3, x5, x6} are examples
of cliques, but {x1, x2, x3, x5} and {x3, x7} are not. Assume that a graphical model
has L cliques C1, . . . , CL . Then, it is known that the joint probability distribution
(11.100) is decomposed as

p (x1, . . . , xn) = c
∏

i,r

φ̃i (xi ) φr (Cr ) , (11.101)

Fig. 11.8 Graphical model
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where c is a normalization constant, φ̃i , i = 1, . . . , n, is a function of xi and
φr (Cr ) , r = 1, . . . , L , is a function of the variables in clique Cr . The decompo-
sition is not unique in general, but is unique when we use only maximal cliques. A
clique is maximal when it is not included in any complete subgraphs.

Divide the nodes of a graphical model into two parts, Xo and Xu . Assume that
values of the variables in Xo are observed but those in Xu are not. Stochastic reasoning
is the problem of estimating the values of unobserved variables in Xu , under the
condition that the variables in Xo are observed. We use the conditional probability
of Xu conditioned on Xo to estimate the unknown values of Xu .

Let us fix the values of Xo and consider the conditional distribution of Xu ,

q (Xu) = p (Xu |Xo ) , (11.102)

where Xo is omitted in the notation of q(Xu). It is again represented by a graphical
model consisting of nodes of Xu . So the problem is the estimation of the values of
Xu in the reduced graphical model, where the values of Xo are fixed and omitted
from the notation. We hereafter denote Xu simply as X and use the vector notation

x = (x1, . . . , xn) . (11.103)

We consider the simple binary case where each xi takes binary values 1 and
−1. The maximum likelihood estimate x based on q(x) is the maximizer of q(x).
However, this is computationally heavy when n is large, because there are 2n x’s
and we need to compare the values of q(x) for all of them. We use the following
simple estimate that the estimated value of xi is 1 when the probability of xi = 1 is
larger than that of xi = −1, and otherwise −1. In other words, let us calculate the
expectation of xi ,

ηi = E [xi ] = Prob {xi > 0} − Prob {xi < 0} (11.104)

and xi = 1 when ηi is positive and xi = −1, when ηi is negative. That is, the estimate
is given by

xi = sign ηi . (11.105)

This minimizes the sum of the error probabilities of all the variables.
The problem reduces to the calculation of the expected value of xi . However, this

is again computationally heavy, because

ηi = E [xi ] =
∑

x1,x2,...,xn

xi q (x1, . . . , xn) (11.106)

includes 2n terms.
We need a computationally tractable algorithm of obtaining a good approxima-

tion of the mean values. This problem appears in physics, too, and the mean field
approximation is well known to obtain such an approximate solution.
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11.3.2 Mean Field Approximation and m-Projection

The probability distribution (11.101) of a graphical model can be written as

q(x) = exp

{
∑

hi xi +
∑

r

cr (x) − ψ

}

, (11.107)

where ψ is the normalization constant, called free energy in physics, with

hi = 1

2
log

φ̃i (xi = 1)

φ̃i (xi = −1)
(11.108)

and
cr (x) = log φr

(
xr1 , . . . , xrs

)
(11.109)

is the term due to clique Cr = {
xr1 , . . . , xrs

}
.

We consider a new expanded exponential family

M̃ = {p(x,θ, v)} , (11.110)

p(x,θ, v) = exp
{
θ · x +

∑
vr cr (xr ) − ψ(θ, v)

}
, (11.111)

which includes two e-affine parameters, namely θ and v = (v1, . . . , vL). The original
q(x) is a member of this family and is given by

θ = h, v = (1, 1, . . . , 1). (11.112)

Whenv = 0, the distributions do not include interaction terms so that the submanifold
specified by v = 0 is the family of independent distributions of x. We denote it by

M0 = {p0(x,θ)} = {exp {θ · x − ψ(θ)}} . (11.113)

Figure 11.9 shows the expanded model M̃ and the independent model M0. The expec-
tation of x is easily calculated for a distribution in M0, because all x1, . . . , xn are
independent. It is given by

ηi = E [xi ] = eθi − e−θi

eθi + e−θi
= tanh (θi ) . (11.114)

Given q(x), we consider the independent distribution p∗(x) ∈ M0 that has the
same expected value of x as q(x). The following theorem shows the relation between
q(x) and p∗(x).

Theorem 11.6 The m-projection of q(x) to M0 keeps the expectation of x invariant.
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Fig. 11.9 m-projection and
e-projection of v(x) to M0 . q x( )
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Proof Let us put

p∗(x) =
m∏

0
q(x), (11.115)

where
m∏

0
is the operator of m-projection to M0 and let the e-coordinates of p∗(x)

be θ∗. The m-coordinates are
η∗ = Ep∗ [x]. (11.116)

The tangent vector of M0 at p∗ is represented by

∂

∂θ
log p(x,θ∗) = x − η∗. (11.117)

On the other hand, the tangent vector of the m-geodesic connecting q and p∗ is given
by

t (x) = q(x) − p∗(x)

p∗(x)
. (11.118)

They are orthogonal because of the m-projection, so we have

〈t (x), x − η∗〉 =
∑(

x − η∗) {q(x) − p∗(x)
} = 0. (11.119)

This shows
Eq [x] = Ep∗ [x], (11.120)

proving the theorem. �
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However, the m-projection of q(x) is not computationally easy. Statistical physics
uses the mean field approximation, which replaces the m-projection by the e-
projection (Tanaka 2000, see Amari et al. 2001 for the α-projection). The m-
projection is given by the minimizer of the KL-divergence K L[q : p], p ∈ M0.
The mean field approximation uses the dual KL-divergence K L[p : q] and mini-
mizes it with respect to p ∈ M0. The minimizer is given by the e-projection of q to
M0. This is computationally tractable so it can be used as an approximate solution.
See Fujiwara and Shuto (2010) for higher-order mean-field approximation.

We consider

q(x) = exp
{

h · x +
∑

wi j xi x j − ψ(h, W)
}

(11.121)

as a specific example, which represents a spin system where the interaction of two
spins xi and x j are given by wi j . The cliques consist of branches (i, j), wi j 	= 0. It
does not include interactions of more than two nodes and is known as the Boltzmann
machine in neural networks, where wi j represents the strength of the synaptic weights
of connection between two neurons xi and x j .

The KL-divergence from p ∈ M0 to q is given by

K L [p(x,θ) : q(x)]

= Ep

[
{θ · x − ψ(θ)} −

{
h · x +

∑
wi j xi x j − ψ(h, W )

}]
. (11.122)

It is easy to see
Ep
[
xi x j

] = ηiη j , (11.123)

because xi and x j are independent under p and hence, we have

K L[p : q] = θ · η − ψ(θ) − h · η −
∑

wi jηiη j + ψ(h, W ). (11.124)

By differentiating it with respect to ηi and making the derivatives equal to 0, we
obtain

ηi = tanh
(∑

wi jη j + hi

)
, (11.125)

where
∂

∂ηi
{θ · η − ψ(θ)} = tanh−1 (ηi ) (11.126)

is taken into account. This is the equation to obtain the minimizer η̃∗ of (11.122).
This is a well-known equation. The solution p̃∗(x) is different from the m-

projection so that it is an approximation. M0 is e-flat but not m-flat. Therefore,
the m-projection is unique but the e-projection is not necessarily unique. Hence,
the solution of (11.125) is not necessarily unique. Moreover, the solution can be a
maximum or a saddle point of K L[p : q].
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11.3.3 Belief Propagation

Belief propagation is an algorithm, proposed by Pearl (1988), to obtain an approxi-
mate value of the expectation of x efficiently. This is a cooperative procedure, where
each node exchanges its belief about the expected value through branches. The belief
is renewed by taking the beliefs of the other nodes into account. The procedure termi-
nates when a consensus is reached. The information geometry of BP was formulated
by Ikeda et al. (2004a, b). We here present a simplified version of it.

Corresponding to each clique Cr , we construct a submodel Mr of M̃ ,

Mr = p (x,θr ) = exp {(h + θr ) · x + cr (x) − ψ (θr )} . (11.127)

It includes only one nonlinear term cr (x) corresponding to clique Cr . The sum of all
the other interactions, cr ′(x) of Cr ′ , r ′ 	= r , is replaced by a linear term θr · x. It is
an exponential family, having e-parameter θr . This is a submanifold of M̃ obtained
by putting

θ = h + θr , vr = 1, vr ′ = 0 for r ′ 	= r. (11.128)

In addition to the independent submodel M0, there are L such submodels Mr , r =
1, . . . , L . Since Mr includes only one nonlinear term, it is computationally easy to
m-project a member of Mr to M0.

To avoid complications, we use notational simplification. Since all the probability
distributions have the term exp(h · x) in common, we neglect it in the following.
This term should be added to the final solution. Mathematically, this corresponds to
defining probability densities with respect to the common measure exp {h · x}. By
this simplification, our target distribution (11.107) is

q(x) = exp
{∑

cr (x) − ψ
}

, (11.129)

and submodels are

Mr : p (x,θr ) = exp {θr · x + cr (x) − ψr (θr )} , (11.130)

M0 : p(x,θ) = exp {θ0 · x − ψ0(θ0)} . (11.131)

All the submodels are e-flat in M̃ .
Each submodel tries to approximate q(x) such that the expectation of x becomes

close to Eq [x]. Since Mr includes only one nonlinear term, all the other interaction
terms are replaced by the linear term θr . They exchange their results concerning the
expectation, and eventually reach a consensus satisfying

Er [x] = E0[x], r = 1, . . . , L , (11.132)
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where Er is the expectation with respect to pr (x,θr ). If the consensus is equal to
the expectation of x with respect to q(x), it is the true solution. But this does not
occur in general. However, it would give a good approximation.

We consider the following procedure for reaching the consensus:

1. Initial step: Assign arbitrary initial values θ0
r to submodels Mr . They can be 0.

Continue the following steps t = 0, 1, . . . until convergence.
2. m-projection step: m-project pr

(
x,θt

r

)
at time t of Mr to M0. Denote the resultant

distribution in M0 by θ̃
t
0r ,

p0

(
x, θ̃

t
0r

)
=

m∏

0
pr
(
x,θt

r

)
. (11.133)

3. Calculation of belief of Mr : Calculate

ξt
r = θ̃

t
0r − θt

r . (11.134)

Since the m-projection of p
(
x,θt

r

)
to M0 is θ̃

t
0r , it includes not only θt

r but also the
linearization of the cr (x). Hence, ξt

r in (11.134) corresponds to the linearization of
the single nonlinear term cr (x). It represents the linearized version of cr (x) in M0.
It is regarded as the belief of Mr that its nonlinear term cr (x) is effectively given by
ξt

r in M0.
4. Renewal of the candidate in M0 at t + 1: Add all the beliefs ξt

r of cr of Mr to
give a distribution of M0 at t + 1,

θt+1
0 =

∑
ξt

r . (11.135)

5. Renewal of Mr at t + 1: Construct a new candidate θt+1
r of Mr , where the

nonlinear terms c′
r

(
r ′ 	= r

)
other than cr are replaced by the sum of the beliefs ξt

r ′
of Mr ′ , but cr is used as it is. Therefore,

θt+1
r =

∑

r ′ 	=r

ξt
r ′ = θt+1

0 − ξt
r . (11.136)

When the procedure converges, the converged θ∗
0 and θ∗

r satisfy

p0
(
x,θ∗

0

) =
m∏

0
pr
(
x,θ∗

r

)
, (11.137)

so all the models reach a consensus, having the same expectation of x.
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11.3.4 Solution of BP Algorithm

We study the solution to which the BP algorithm converges from the geometrical
point of view. It should be remarked that there is no guarantee of convergence for the
BP algorithm. Note that the CCCP algorithm in the next section always converges.

Theorem 11.7 When the BP algorithm converges, the following two conditions are
satisfied:

m-condition:
m∏

0
pr
(
x,θ∗

r

) = p0
(
x,θ∗

0

)
,

e-condition: (L − 1)θ∗
0 = ∑

θ∗
r .

Proof The m-condition is the consequence of consensus (11.137). The e-condition
is derived by using (11.134) and (11.135). �

We remark that the e-condition is always satisfied for θt
0 and θt

r after step 5 of
the procedure, but the m-condition is not. The procedure terminates when the m-
condition is satisfied. The implications of the two conditions are as follows. See
Figs. 11.10 and 11.11. Let M∗ be the m-flat submanifold connecting all of pr

(
x,θ∗

r

)

and p0
(
x,θ∗

0

)
,

M∗ =
{

p(x)

∣∣∣p(x) =
∑

tr pr
(
x,θ∗

r

)+
(

1 −
∑

tr
)

p0
(
x,θ∗

0

)}
. (11.138)

Fig. 11.10 m-condition
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Fig. 11.11 e-condition
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Let E∗ be the e-flat submanifold connecting all of them,

E∗ =
{

log p(x) =
∑

tr log p
(
x,θ∗

r

)+ (1 −
∑

tr ) log p0
(
x,θ∗

0

)− ψ
}

.

(11.139)

Corollary The m- and e-conditions are equivalent to the following two, respectively:

m-condition: M∗ is orthogonal to M0.
e-condition: E∗ includes the true distribution q(x).

If M∗ includes q(x), its m-projection to M0 is θ∗
0. The solution is exact in such a

case. The following theorem is known.

Theorem 11.8 When the underlying graph is acyclic, that is, it does not include
cycles, M∗ includes q(x) and the solution gives the exact answer.

The BP algorithm is stated in geometrical terms in the above explanation. It is
beneficial to show the relation between the geometrical algorithm and the conven-
tional BP algorithm written in textbooks. The two are essentially the same. We show
only the case where interactions exist between pairs of nodes and no higher-order
interactions exist. The conventional algorithm calculates the belief b(xi ) at node xi

and message mki (xi ), which is transmitted from node xk to node xi through branch
(i, k). The belief is constructed from the messages by

bt
i (xi ) = 1

Z
φ̃i (xi )

∏

k∈N (i)

mt
ki (xi ) , (11.140)
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where Z is the normalization constant and N (i) is the set of nodes which are con-
nected with node xi . The messages at t + 1 are updated by

mt+1
i j

(
x j
) = 1

Z

∑

xi

φ̃i (xi ) φi j
(
xi , x j

) ∏

k∈N (i)− j

mt
ki (xi ) . (11.141)

The correspondence of the quantities appearing in the two approaches are given by

θi
0 = 1

2
log

∏

k∈N (i)

mki (xi = 1)

mki (xi = −1)
, (11.142)

θi
r = 1

2
log

∏

k∈N (i)− j

mki (xi = 1)

mki (xi = −1)
, (11.143)

where r is the branch (clique) connecting i and j .

11.3.5 CCCP (Convex–Concave Computational Procedure)

A new algorithm called CCCP was proposed by Yuille (2002), see also Yuille and
Rangarajan (2003). We show a new version of it based on information geometry,
which is much simpler than the original one, because the new one does not include
double loops in the procedure.

The BP algorithm chooses a set (θr ,θ0) at each step that satisfies the e-condition
and m-projects this set to M0. It modifies the results toward the satisfaction of the
m-condition in the renewal steps. Contrary to this, we may choose (θr ,θ0) at each
step that satisfies the m-condition. Then, we modify them in the renewal steps toward
satisfying the e-condition.

This gives a new algorithm (Ikeda et al. 2004a):

1. Initial step: Assign an initial value θ0
0. It can be θ0

0 = 0. Do the following iterations
until convergence, for t = 0, 1, 2, . . .

2. m-condition step: Inversely m-project p0
(
x,θt

0

) ∈ M0 to Mr , that is, to find
pr
(
x,θt

r

) ∈ Mr such that

m∏

0
pr
(
x,θt

r

) = p0
(
x,θt

0

)
. (11.144)

Then,
(
θt

0,θ
t
r

)
satisfies the m-condition.

3. Renew the θt
0 by

θt+1
0 =

∑

r

(
θt

0 − θt
r

) = Lθt
0 −

∑

r

θt
r . (11.145)

The e-condition is satisfied when the algorithm converges.
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The original form proposed by Yuille (2002) is based on a different idea. In
analogy with physics, the BP algorithm is proved to search for the critical point of a
function F(z) called free energy where z is the state variables, which in our case is
z = (θ0,θ1, . . . ,θr ) (Yedidia et al. 2001). This function is not convex, so there is
no guarantee that the gradient descent method converges. Yuille (2002) proved that
a function F(z) of z is always decomposed into a sum of a convex function and a
concave function,

F(z) = Fconvex(z) + Fconcave(z). (11.146)

The decomposition is not unique. The CCCP is an iterative algorithm for obtaining
the critical point of F by

∇Econvex
(
zt+1

) = −∇Econcave
(
zt
)
. (11.147)

It always converges, whereas BP does not necessarily do so. When it converges, the
convergent point satisfies both the m-condition and e-condition.

The original CCCP algorithm by Yuille is written in our geometrical terminology
as follows:

1. Calculate θt+1
0 from

θt+1
0 = Lθt

0 −
∑

θt+1
r , (11.148)

where θt+1
r is given by solving

2.

p0
(
x,θt+1

0

) =
m∏

0
exp

{
θt+1

r · x + cr (x) − ψr
}
. (11.149)

When comparing these with (11.144) and (11.145), θt+1
r is used in (11.148) instead

of θt
r in (11.145). Hence, we need to solve the nonlinear equations to obtain θt+1

0
and θt+1

r in one step. After that, we proceed to the next iteration step increasing t
by 1. So it includes double loops and is computationally expensive. Our geometrical
algorithm is simpler, and does not include the double loops. The approximation errors
due to BP or CCCP are analyzed in Ikeda et al. (2004a) by using the curvature.

11.4 Information Geometry of Boosting

A single learning machine might not be powerful. There is an idea due to M. Kearns
and L. Valiant: A powerful machine might be constructed from a number of weak
learning machines by integration. This idea was realized by Freund and Schapire
(1997) and Schapire et al. (1998) under the name of “boosting”. It was shown by
Lebanon and Lafferty (2001) that information geometry is useful for understanding



11.4 Information Geometry of Boosting 261

the boosting algorithm. The idea was expanded further by Japanese researchers
(including Murata et al. 2004; Takenouchi and Eguchi 2004; Kanamori et al. 2007;
and Takenouchi et al. 2008).

11.4.1 Boosting: Integration of Weak Machines

Consider a pattern classifier, which learns from training examples D =
{
(
x1, y∗

1

)
,

. . . ,
(
xN , y∗

N

)
}

. Here xt is an input pattern at time t and y∗
t is the correct answer

corresponding to xt , which takes binary values 1 and −1. A classifier uses an analog-
valued output function F(x) and the output y is decided by the decision function
h(x) which is the signature of F(x),

y = h(x) = sgn F(x). (11.150)

Assume that we have T weak machines of which the decision functions are

ha(x) = sgn Fa(x), a = 1, 2, . . . , T . (11.151)

The performance of a weak machine may be very weak, although its error probability
should be less than 0.5. By integrating them, we construct a machine of which the
output function is

F(x) =
T∑

a=1

αaha(x), (11.152)

where αa are parameters to be determined from the data. See Fig. 11.12. We begin
with a weak machine and add new weak machines one by one. The weights αa are
also determined sequentially.

There are two problems to be solved. One is how to compose the next weak
machine ht (x) at time t , and the other is how to determine the weight αt .

Fig. 11.12 Integration of
weak machines
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.x y

..
.

F x( )
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α2
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.
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11.4.2 Stochastic Interpretation of Machine

Although a weak learning machine is deterministic, we introduce a stochastic inter-
pretation to evaluate its performance. We consider it as if it were a stochastic machine
such that the probability of emitting y is given by

q(y|x) = c exp

{
1

2
yF(x)

}
, (11.153)

where c is a normalization constant. Obviously, when F(x) takes a large positive
value, the probability of y = 1 is large and when it takes a negative value with a
large magnitude, the probability of y = −1 is large. We rewrite (11.153) as

q(y|x) = c′ exp

[
1

2

{
y − y∗(x)

}
F(x)

]
, (11.154)

where y∗(x) is the true output value to x and

c′ = c exp

{
1

2
y∗(x)F(x)

}
. (11.155)

Note that c′ does not depend on y. Since an error occurs when y = −y∗, the proba-
bility of error for x is

q
(−y∗

i |xi
) = c′ exp

{−y∗
i F (xi )

}
. (11.156)

We define the loss caused by a machine for input x

W̃ (xi ) = exp
{−y∗

i F (xi )
}

(11.157)

by neglecting the constant c′. We normalize the losses for all the data as

W (xi ) = 1

Z
W̃ (xi ) , (11.158)

where
Z =

∑

i

W̃ (xi ) . (11.159)

Then, W (xi ) is a distribution of losses over the training examples such that their
sum is normalized to 1.
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Let I− be the set of indices i such that xi are erroneously answered by machine
F(x). The performance of the machine is evaluated by the error probability

εF =
∑

i∈I−

W (xi ) . (11.160)

11.4.3 Construction of New Weak Machines

The weak machines are constructed one by one. Assume that we have constructed t
weak machines h1(x), . . . , ht (x) and integrated them into the current machine

Ft (x) =
t∑

a=1

αaha(x). (11.161)

The performance of a machine is evaluated by the error distribution given by

Wt (xi ) = 1

Zt
exp

{−y∗
i Ft (xi )

}
. (11.162)

It is reasonable to add a new machine of which the performance is good for those
examples that are bad in the current machine.

To this end, we set up a new machine and train it using the training examples D,
but patterns xi ∈ D are applied not equally, but with frequency Wt (xi ). This implies
that the new training examples are generated from D by resampling such that those
which are difficult for the current machine appear frequently. Any type of machine
can be used as a new weak machine to be trained, a simple or multilayer perceptron,
a support vector machine, a decision tree, and others.

11.4.4 Determination of the Weights of Weak Machines

We add a newly trained weak machine ht+1(x) to the previous weak machines,
forming a new machine

Ft+1(x) =
t∑

a=1

αaha(x) + αht+1(x). (11.163)
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Fig. 11.13 Determination of
weight α
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.
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.

Here, α is the parameter to be decided. The conditional probability of y by the new
machine is

q (y |x,α ) = c exp

{
1

2
yFt+1(x)

}
= c exp

{
1

2
yFt (x) + 1

2
αyht+1(x)

}
. (11.164)

This forms a one-dimensional exponential family Et+1 where the e-coordinate is α.
Therefore, given the training data D, the best distribution to fit the training data is
given by the m-projection of the empirical distribution of data to the exponential
family Et+1. See Fig. 11.13.

The coefficient c in (11.164) is a complicated function of α and D. We ignore this
term, considering Et+1 as a family of unnormalized positive measures,

M =
{

c exp

{
1

2
yFt+1(x)

}
; c > 0 is arbitrary

}
. (11.165)

Then, the optimum solution is obtained by m-projecting

pemp(y, x) = 1

N

∑
δ
(
y − y∗

i

)
δ (x − xi ) (11.166)

to Et+1, that is, by minimizing K L
[

pemp : q(y|x,α)
]
. From

q̃(y |x,α ) = exp

{
1

2

(
y − y∗(x)

) t∑

i=1

αi hi (x)

}

, (11.167)

where c is ignored, the KL-divergence is written as

K L
[

p̃emp(y, x) : q̃(y |x,α )
]

= C −
∑

i

log q̃ (yi |xi ,α ) +
∑

i,y

q (y |xi )

= C − 1

2

∑

i

{
y∗

i − y∗ (xi )
}∑

α j h j (xi )

+
∑

i

∑

yi =1,−1

exp

{
1

2

(
yi − y∗

i

)∑
α j h j (xi )

}
, (11.168)
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where C is a term not depending on α. Since y∗
i = y∗ (xi ) and the objective function

to be minimized is

L(D,α) =
∑

i

exp
{
−y∗

i

[∑
α j h j (xi ) + αht+1 (xi )

]}
, (11.169)

by differentiating it with respect to α, we have

∑

i

Wt (xi ) y∗
i ht+1 (xi ) e−α{y∗

i ht+1(xi )} = 0. (11.170)

We introduce a new index set I t+1
− such that i ∈ I t+1

− implies that pattern xi is
wrongly classified by the new machine ht+1, that is,

y∗
i ht+1 (xi ) = −1. (11.171)

Let us put
εt+1 =

∑

i∈I−

Wt (xi ) , 1 − εt+1 =
∑

i∈I+

Wt (xi ) . (11.172)

Then, (11.170) reduces to

− εt+1eα + (1 − εt+1) e−α = 0. (11.173)

We obtain the solution

α = 1

2
log

1 − εt+1

εt+1
. (11.174)

The weight of example xi is renewed as

Wt+1 (xi ) = 1

Zt+1
Wt (xi ) exp

{−αt+1 y∗
i ht+1 (xi )

}
. (11.175)

11.5 Bayesian Inference and Deep Learning

Information geometry of Bayesian statistics has not yet been well developed except
for preliminary studies (e.g., Zhu and Rohwer 1995). Bayesian theory regards data
and parameters as random variables at the same time. Hence, information geometry
is applied to their joint probability distributions. It is hoped to construct a deeper
structure beyond superficial Bayesian information geometry, which would be use-
ful for machine learning, in particular for deep learning. This section proposes a
preliminary trial concerning information geometry of Bayesian statistics. We use
the restricted Boltzmann machine (RBM) for this purpose, which is an important
constituent in deep learning.
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11.5.1 Bayesian Duality in Exponential Family

An exponential family of probability distributions is represented by

p(x|θ) = exp
{
θ · x − k̄(x) − ψ(θ)

}
, (11.176)

where x is a vector random variable, θ is a vector parameter and k̄(x) corresponds
to the underlying measure of x,

dμ(x) = exp
{−k̄(x)

}
dx. (11.177)

Bayesian statistics assumes that the parameter θ is also a random variable subject
to a prior distribution π(θ). Then, the joint probability of θ and x is

p(x,θ) = exp
{
θ · x − k̄(x) − ψ̄(θ)

}
, (11.178)

where
ψ̄(θ) = ψ(θ) − log π(θ). (11.179)

The Bayesian posterior distribution is the conditional distribution of θ given x and
is written as

p(θ|x) = exp
{
θ · x − ψ̄(θ) − k(x)

}
, (11.180)

where

k(x) = k̄(x) + log p(x), (11.181)

p(x) =
∫

p(x,θ)dθ. (11.182)

It is an exponential family, where the random variable is θ and the natural parameter to
specify a distribution is x. Although the roles of θ and x are different, the conditional
distributions have the same exponential form shown in (11.176) and (11.180). We
call it the Bayesian duality.

The e-affine parameter is θ in the manifold of probability distributions (11.176)
and hence, the dual m-affine parameter is

η = Eθ[x] =
∫

x p(x|θ)dx. (11.183)

whereas, the e-affine parameter is x in the manifold of the posterior probability
distributions (11.180) and hence the m-affine parameter is the conditional posterior
expectation of θ,

θ∗ = Ex[θ] =
∫

θ p(θ|x)dθ. (11.184)
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We extend (11.178) to a family of joint probability distributions parameterized
by a hyper parameter ζ. Then, M = {p(x,θ; ζ)} forms a manifold consisting of
exponential families. Its simple example is the case when a prior distribution π(θ)

is given in a parametric form as π(θ, ζ). Here, the extra parameter ζ is called a
hyper parameter. A family of prior distributions called conjugate priors is used
sometimes, because of its simplicity. A conjugate prior π(θ, ζ) has the same form
as the conditional distribution p(θ|x). In our exponential case, because of (11.180),
the conjugate prior is written as

π(θ, ζ) = exp {α · θ − βψ(θ) − χ(α,β)} , (11.185)

where ζ = (α,β) is the hyper parameter and χ(α,β) is a normalization factor. When
we use N independent observations D = {x1, x2, . . . , xN }, the posterior distribution
under prior π(θ,α,β) is explicitly given by

p(θ|D,α,β) = exp {θ · (α + N x̄) − (N + β)ψ(θ) − χ(α,β)} , (11.186)

where

x̄ = 1

N

∑
xi (11.187)

is the observed point. This makes the role of the conjugate prior clear: The conjugate
prior has the effect of shifting the observed point from x̄ to x̄ + α/N , that is, of
adding β additional pseudo-observations of which the observed value is α/β to the
previous N x̄. Alternatively, observed data D change the parameter of the conjugate
prior as follows:

α → α + N x̄, β → β + N . (11.188)

The geometry of the conjugate prior is studied by Agarwal and Daumé III (2010).
We can enlarge our framework by considering a curved exponential family, where

θ is specified by a low-dimensional parameter u such that

θ = θ(u). (11.189)

The random variable x may be an embedded version of low-dimensional signals v,

x = x(v). (11.190)

Then, probability distributions of u and v form a curved exponential family.
We may further consider an extended family of distributions such that a joint

distribution (11.178) is specified by an additional parameter W as p(x,θ; W ). We
use this as a model of machine learning or the brain. Here, x or x(v) is information
given from the environment. θ or θ(u) represents a higher-order concept which
specifies the distribution of x. An inference system guesses θ from x such that x is
generated from p(x|θ). See Fig. 11.14. This is a simple layered model of the brain,
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Fig. 11.14 Bayesian
inference of higher
information θ from x

h( )

x v( )

input

inference

generative

where x is given to an input layer and θ is generated in the next layer by Bayesian
inference. There may be feedback connections from the higher-order layer to the
lower-order layer so that a dynamical process takes place between them. The RBM
is its stochastic model.

11.5.2 Restricted Boltzmann Machine

The Boltzmann machine was proposed by Ackley et al. (1985). It is a Markov chain
over state x, of which the stable distribution is given by

p(x, c, W) = exp

{
c · x − 1

2
xT Wx − ψ

}
, (11.191)

where c is a vector and W is a symmetric matrix.
The restricted Boltzmann machine (RBM) is a layered machine consisting of

two layers and there are no interactions among elements (we call them neurons)
within each layer. Interactions (connections) exist only between neurons of different
layers. This was proposed by Smolensky (1986) and has been extensively used in
deep learning (Hinton and Salakhutdinov 2006 and others).

We divide x into two parts, x = (v, h), where v and h are binary vector random
variables representing activities of neurons of the two layers in the RBM (Fig. 11.15).
The first layer is called an input layer or visible layer, to which a signal v is applied
from the environment. The second layer is called a hidden layer of which activity
pattern h is generated from input v in the first layer.

The stable probability distribution of an RBM is written as

p(v, h, a, b, W) = exp
{

a · v + b · h + hT Wv − ψ(a, b, W)
}
, (11.192)

since there are no connections among the neurons in each layer. This is an exponential
family of distributions. The stable probabilities of v and h are given by its marginal
probability distributions,
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Fig. 11.15 RBM (restricted
Boltzmann machine)
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pV (v) =
∑

h

p(v, h), (11.193)

pH (h) =
∑

v

p(v, h), (11.194)

and they are not of the exponential type.
We compare the RBM with the Bayesian scheme in the previous section. When

the number m of neurons in the hidden layer is smaller than the number n in the
visible layer, we introduce new random variables by

θ = h, (11.195)

x = Wv. (11.196)

In the opposite case, we introduce

θ = hT W, (11.197)

x = v. (11.198)

In either case, the stationary probability distribution is written in the standard form
(11.178) of Bayesian joint distribution. Therefore, we may consider an RBM as
representing the Bayesian mechanism of statistical inference.

11.5.3 Unsupervised Learning of RBM

For an RBM having the stationary joint probability (11.192), we have the two con-
ditional distributions

p(h|v, a, b, W) = p(v, h, a, b, W)

pV (v, a, b, W)
, (11.199)

p(v|h, a, b, W) = p(v, h, a, b, W)

pH (h, a, b, W)
. (11.200)
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They show the probabilities of activities of one layer given the activities of the
other layer. Let q(v) be a probability distribution of v given from the environment,
subject to which input v is generated. An RBM is trained by receiving v such that
its stationary marginal distribution pV (v; a, b, W) approximates q(v). This is done
by modifying W, a and b so that the KL-divergence DK L [q(v) : pV (v, a, b, W)] is
minimized. The minimizing W, a, b are the maximum likelihood estimator. For the
sake of notational simplicity, we hereafter neglect the bias terms a and b by making
them equal to 0, but they can be treated in a similar manner. This is only for the
purpose of avoiding unnecessary complication.

Let MV be a submanifold consisting of the marginal probability distributions of
v of the RBM,

MV = {p(v, W)} (11.201)

in the entire manifold SV of probability distributions of v. The minimizer W of the
KL-divergence DK L [q(v) : p(v, W)] is given by the m-projection of q(v) to the
submanifold MV (Fig. 11.16). However, it is simpler to treat the manifold of joint
distributions of (v, h) rather than the marginal distributions of v. To this end, we
consider a manifold SV,H consisting of all joint probability distributions of v and h.
We study two submanifolds in it. One is the submanifold of the RBM,

MV,H = {p(v, h, W)} , (11.202)

parameterized by W. The other is the data submanifold MV,H |q given by

MV,H |q = {q(v)r(h|v)} , (11.203)

where q(v) is fixed and r(h|v) is an arbitrary conditional distribution of h conditioned
on v. The marginal distribution of any member of MV,H |q is q(v). Consider the KL-
divergence between the two submanifolds,

Fig. 11.16 m-projection of
q(v) to MV

.

.

m-projection

q( )vSV

MV

W
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DK L
[
MV,H |q : MV,H

] = min
r,W

DK L [q(v)r(h|v) : p(v, h, W)] . (11.204)

Theorem 11.9 The minimizers of the KL-divergence DK L
[
MV,H |q : MV,H

]
between

two submanifolds are given by r(h|v) = p(h|v, Ŵ) and p(v, h, Ŵ), where Ŵ is the
MLE of pV (v, W) for data v generated from q(v).

Proof We can decompose DK L as follows:

DK L [q(v)r(h|v) : p(v, h, W)]

=
∫

q(v)r(h|v) log
q(v)r(h|v)

p(v, h, W)
dvdh

=
∫

q(v)r(h|v)

{
log

q(v)

p(v, W)
+ log

r(h|v)

p(h|v, W)

}
dhdv

= DK L [q(v) : p(v, W)] +
∫

q(v)DK L [r(h|v) : p(h|v, W)] dv. (11.205)

Therefore, the minimum of the DK L with respect to r(h|v) is attained by p (h|v, W)

and the minimum with respect to W is attained by the minimizer of DK L [q(v) :
p(v, W)]. �

Let q̂ = q(v)r̂(v|h) and p̂ = p
(
v, h, Ŵ

)
be the closest pair of DK L

[
MV,H |q : MV,H

]
. Then, p̂ is given by the m-projection of q̂ and q̂ is the e-projection

of p̂. This is clear from the em (EM) algorithm in the presence of hidden vari-
able h, since the e-projection keeps the conditional probability p(h|v, W) and the
m-projection maximizes the log likelihood. See Fig. 11.17, where the minimization
problem in SV,H is mapped onto that in SV .

We now give the learning algorithm established by Ackley et al. (1985). This is
the stochastic descent method of DK L .

Theorem 11.10 The averaged learning rule of RBM is given by

ΔWi j = ε
(〈hiv j 〉q − 〈hiv j 〉p

)
, (11.206)

where ε is a learning constant, 〈hiv j 〉q is the average of hiv j subject to the joint
probability distribution

q(v, h; W) = q(v)p(h |v, W ) (11.207)

and 〈hiv j 〉p is the average over the stationary distribution p(v, h, W) of the RBM.
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Fig. 11.17 Minimizer of DK L
[
MV,H |V : HV,H

]

Proof Since we have

DK L [q(v) : p(v, W)] =
∫

q(v) log q(v)dv

−
∫

q(v)

(
log

∫
exp

{
hT Wv − ψ

}
dh
)

dv, (11.208)

we have

∂DK L

∂W
= −

∫
q(v)

(
hvT − ∂

∂W
ψ

)
p(v, h, W)

p(v, W)
dhdv

= −
∫

hvT q(v)p(h|v, W)dvdh + ∂

∂W
ψ

= −〈hvT 〉q(v)p(h|v) + 〈hvT 〉p(v,h), (11.209)

because
∂ψ

∂W
= E p

[
hvT

]
. (11.210)

�

This is the ordinary gradient descent method. The natural gradient method would
work better, if we had its computational algorithm. Since the learning rule (11.206)
includes only the expectation of the cross term of v and h with respect to p(v, h, W)

and q(v, h, W), all the other higher-order interaction terms are irrelevant. Therefore,
this suggests the use of a mixed coordinate system, which separates the second-order
terms from higher-order terms of interactions (see Akaho and Takabatake 2008).



11.5 Bayesian Inference and Deep Learning 273

11.5.4 Geometry of Contrastive Divergence

The learning algorithm (11.206) is computationally heavy. This is because, in order
to calculate the expectation of 〈hvT 〉p, we need a long run of MCMC procedures for
obtaining samples from the stable distribution p(v, h, W). The MCMC procedures
work as follows:

1. Begin with an arbitrary vt and generate ht by using the conditional distribution
p(h|v, W).

2. Generate vt+1 from the current ht by using the conditional distribution p(v|h, W).
3. Repeat the procedures, t = 0, 1, 2, . . ..

We then have a sequence of (vt , ht ) of which the empirical distribution converges
to p(v, h, W). These data can be used to calculate the average 〈hvT 〉p in (11.206)
or (11.209).

The contrastive divergence is an approximation of the KL-divergence, proposed
by Hinton (2002). This has been used frequently in deep learning. It runs a finite
number, say k, of iterations of the above procedures. The order k contrastive diver-
gence (C Dk) uses a pair of (vk, hk), where v0 is derived from q(v) as an initial value,
ht is derived from p (h |vt ; W ) and vt+1 is derived from p (v |ht ; W ). Repeating
the procedures up to t = k from many initial v’s, the derived empirical distribution
of (vk, hk) is used to obtain an approximation of 〈hvT 〉p.

We study the probability distribution pk(v, h, W) of (vk, hk), which we call the
C Dk distribution, following Karakida et al. (2014). Let its marginal distributions be
pV k(v, W) and pHk(h, W). They are

pV k(v, W) =
∫

pk (v, h, W) dh, (11.211)

pHk(h, W) =
∫

pk (v, h, W) dv. (11.212)

Then, the C D j distributions are calculated recursively by

p j (v, h, W) = pV j (v)p(h|v, W), j = 0, . . . , k, (11.213)

p̃H j+1(v, h, W) = pH j (h, W)p(v|h, W). (11.214)

In order to understand the C Dk distributions, we consider two submanifolds
MH |V (W) and M̃V |H (W) in SV,H . They are defined by

MH |V (W) = {r(v)p(h|v, W)} , (11.215)

M̃V |H (W) = {r̃(h)p(v|h, W)} , (11.216)

where r(v) and r̃(h) are arbitrary distributions. They intersect at p(v, h, W), because,
when r(v) = pV (v, W) and when r̃(h) = pH (h, W), both the distributions are equal
to p(v, h, W). Moreover, both MH |V and M̃V |H are e-flat, because the e-geodesic
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Fig. 11.18 CDR distribution
Pk(v, h, W)
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connecting r1(v)p(h|v) and r2(v)p(h|v),

t {log r1(v)p(h|v)} + (1 − t) {log r2(v)p(h|v)} = {
log r1(v)t r2(v)1−t p(h|v)

}
,

(11.217)

is included in MH |V , where we have omitted the normalization factor c(t). The same
situation holds for M̃V |H . See Fig. 11.18.

The initial distribution is given by putting p0(v) = q(v) as

p0(v, h, W) = p0(v)p (h|v, W) . (11.218)

Then, the sequence of C Dk distributions is given by the geometrical procedures in
the following theorem, due to R. Karakida.

Theorem 11.11 p̃ j (v, h, W) is the m-projection of p j−1(v, h, W) to M̃H|V(W) and
p j (v, h, W) is the m-projection of p̃ j (v, h, W) to MV|H(W).

Proof Given p̃ j (v, h, W), its m-projection to MH|V is given by the minimizer of

DK L
[

p̃ j (v, h, W) : r(v)p(h|v)
] = −

∫
p̃ j (v, h, W) log r(v)dvdh + c (11.219)

with respect to r(v), where c is a term not depending on r(v). By adding the constraint

∫
r(v)dv = 1, (11.220)
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the variation of DK L gives
r(v) = pV j (v, W). (11.221)

The other case is proved similarly. �

The theorem shows that p j (v, h, W) converges to p(v, h, W) as j increases.
Hence, p j (v, h, W) may be used as an approximation of p(v, h, W) in calculations
of 〈hvT 〉p.

The following is an interesting observation based on the Pythagorean theorem.

Theorem 11.12 The KL-divergence from p0(v, h, W) to p(v, h, W) is decomposed
as

DK L [p0 : p] =
∑

j=0

DK L
[

p j : p̃ j+1
]+

∑

j=1

DK L
[

p̃ j : p j
]
. (11.222)

Proof Since p̃ j p j p is an orthogonal triangle in which the m-geodesic p̃ j p j is orthog-
onal to the e-geodesic p j p, we can apply the Pythagorean theorem to decompose
DK L

[
p̃ j : p

]
(Fig. 11.17). Similar decomposition holds for DK L

[
p j : p

]
. Hence,

repeating the decomposition recursively, we have the theorem. �

11.5.5 Gaussian RBM

We may consider an analog RBM in which both v and h take analog values. A typical
one is a Gaussian RBM in which both v and h are Gaussian random variables. The
stationary distribution is written as

p(v, h, W) = exp

{

− 1

2σ2
v

|v|2 − 1

2σ2
h

|h|2 + hT Wv

σvσh
− ψ

}

. (11.223)

Here, the quadratic terms of v and h exist but they do not include cross terms such
as viv j (i 	= j), so that there are no mutual connections among the neurons in each
layer.

The Gaussian RBM is simple and hence tractable, because all related distributions
are described in the framework of Gaussian distributions. The conditional distribu-
tions are Gaussian given by

p(h|v, W) = c exp

{
− 1

2σ2
n

|h − σh

σv

Wv|2
}

, (11.224)

p(v|h, W) = c′ exp

{

− 1

2σ2
v

∣
∣∣
∣v − σv

σh
WT h

∣∣∣
∣

2
}

, (11.225)
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and the marginal distribution is also Gaussian,

pV (v, W) = c′′ exp

{
− 1

2σ2
v

vT
(
I − WT W

)
v

}
, (11.226)

where c, c′ and c′′ are adequate constants.
Karakida et al. (2014) analyzed the behavior of the Gaussian RBM when the

distribution q(v) of v given from the outside is mean 0 and its covariance matrix is
C. Since

〈hvT 〉q = 1

σ2
v

WC, (11.227)

〈hvT 〉p = W
(
I − WT W

)−1
(11.228)

hold, the equation of learning (11.206) is written as

ε
dW
dt

= 1

σ2
v

WC − (
I − WT W

)−1
, (11.229)

where we use continuous time. They also calculated the equation of learning for
C Dk , obtaining

ε
dW
dt

= 1

σ2
v

WC −
{

1

σ2
v

W
(
WT W

)k
C
(
WT W

)k +
2k−1∑

i=0

(
WT W

)i

}

. (11.230)

We can easily see that (11.230) converges to (11.229) as k tends to infinity.
We study the equilibrium solutions and their stability for the above equations.

The following theorem shows that a Gaussian RBM performs a PCA-like analysis.
To this end, let λ1, . . . ,λn be n eigenvalues of C (where we assume that they are all
distinct) and let O be the orthogonal matrix that diagonalizes C,

C = OT ΛO. (11.231)

Theorem 11.13 Assume that there are r eigenvalues which are larger than σ2
v . Then,

the equilibrium solutions of (11.229) and (11.230) are the same, given by

W = UΛ̃O, (11.232)

where U is an arbitrary m × m orthogonal matrix and

Λ̃ = diag

(√

1 − 1

λ
,

√

1 − 1

λ2
, . . .

√

1 − 1

λr
, 0, . . . , 0

)

. (11.233)
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The proof is technical and is omitted (see Karakida et al. 2014). The stability of
solutions is also analyzed.

By choosing the coordinate axes of v adequately, we see that the marginal distri-
bution of RBM is given:

pV (v, W) = c exp

{

−
r∑

i=1

v2
i

2λi
−

n∑

i=r+1

v2
i

2σ2
v

}

. (11.234)

This shows that the Gaussian RBM performs the PCA analysis, neglecting smaller
eigenvalues. It is also shown that the C D1 learning method has a sufficiently good
performance compared to the original RBM learning method (maximum likelihood
method).

Remarks

We have glanced at topics of machine learning from the information geometry point
of view. Since stochastic uncertainty is involved in the real world, it is expected that
information geometry will provide good ideas, useful suggestions and clear under-
standing of aspects of machine learning. Clustering techniques are the main tools of
information retrieval, where divergence functions are used. They are connected with
information geometry. We have demonstrated that robust clustering is achieved by
tBD. This field is developing quickly. See Nock et al. (2015).

Support vector machines are useful tools in pattern recognition and regression.
We have avoided following the main stream of the kernel method and instead touched
upon how the performance of a kernel is improved by a conformal transformation.
This might give a hint for a good choice of kernels.

Stochastic reasoning is an important procedure, where belief propagation (BP)
plays a key role. We can reformulate the BP algorithm by using information geometry.
This gives a more transparent understanding of the algorithm than the conventional
one. Moreover, it provides an efficient algorithm of stochastic inference, which is a
new version of the convex–concave computational procedure (CCCP). The boosting
of weak learners is also outlined.

Deep learning is a hot topic, for which we still lack convincing theories. We
have proposed a way to understand it from information geometry of Bayesian statis-
tics. The restricted Boltzmann machine (RBM) is understood in the framework of
Bayesian information geometry. Karakida et al. (2014; 2016) studied the performance
of the Gaussian–Bernoulli RBM and showed that it performs ICA in restricted sit-
uations. However, this still remains as a half-baked idea, emerging in the last stage
of completing this monograph. The geometry of contrast divergences is mostly due
to on-going research by R. Karakida (PhD student at the University of Tokyo) and
it might be too early to be included here. In order to understand deep learning, we
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need to construct a good model of q(v) which involves hierarchical structure. Hier-
archies of hidden layers unveil their hidden structure one layer at a time. This is
unsupervised learning. The supervised aspect of deep learning is related to singular-
ities existing ubiquitously in a neuromanifold, and will be one of the main topics of
the next chapter.



Chapter 12
Natural Gradient Learning and Its
Dynamics in Singular Regions

Learning takes place in a parameter space, which is not Euclidean in general but
Riemannian. Therefore, we need to take the Riemannian structure into account when
designing a learning method. The natural gradient method, which is a version of sto-
chastic descent learning, is proposed for this purpose, using the Riemannian gradient.
It is a Fisher efficient on-line method of estimation. Its performance is excellent in
general and it has been used in various types of learning problems such as neural
learning, policy gradient in reinforcement learning, optimization by means of sto-
chastic relaxation, independent component analysis, Monte Carlo Markov Chain
(MCMC) in a Riemannian manifold and others.

Some statistical models are singular, implying that its parameter space includes
singular regions. The multilayer perceptron (MLP) is a typical singular model. Since
supervised learning of MLP is involved in deep learning, it is important to study the
dynamical behavior of learning in singular regions, in which learning is very slow.
This is known as plateau phenomena. The natural gradient method overcomes this
difficulty.

12.1 Natural Gradient Stochastic Descent Learning

12.1.1 On-Line Learning and Batch Learning

Huge amounts of data exist in the real world. Consider a set of data which are gen-
erated randomly subject to a fixed but unknown probability distribution. A typical
example is shown in the regression problem, where input signal x is generated ran-
domly, accompanied by a desired response f (x). A teacher signal y, which is a noisy
version of the desired output f (x),

y = f (x) + ε, (12.1)
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is given together with x, where ε is random noise. The task of a learning machine
is, in this case, to estimate the desired output mapping f (x) by using the avail-
able examples of input–output pairs D = {(xi , yi ) , i = 1, 2, . . . , T }, called training
examples. They are subject to an unknown joint probability distribution,

p(x, y) = q(x)Prob {y|x} = q(x)pε {y − f (x)} , (12.2)

where q(x) is the probability distribution of x and pε(ε) is the probability distribution
of noise ε, typically Gaussian. This is a usual scheme of supervised learning.

We use a parameterized family f (x, ξ) of functions as candidates for the desired
output, where ξ is a vector parameter. The set of ξ is a parameter space and we
search for the optimal ξ̂ that approximates the true f (x) by using training examples
D. When y takes an analog value, this is a regression problem. When y is discrete,
say binary, this is pattern recognition.

In order to evaluate the performance of machine f (x, ξ), we define a loss function
or cost function. The instantaneous loss of processing x by machine f (x, ξ) is
typically given by

l(x, y; ξ) = 1

2
{y − f (x, ξ)}2 , (12.3)

in the case of regression, which is a half of the square of the difference between the
teacher output y and machine output f (x, ξ).

The loss function of machine ξ is the expectation of the instantaneous loss over
all possible pairs (x, y),

L(ξ) = Ep [l(x, y; ξ)] , (12.4)

where the expectation is taken with respect to the unknown joint probability distrib-
ution p(x, y). However, since we do not know p(x, y), we use the average over the
training data,

L train(ξ) = 1

T

T∑
t=1

l (xt , yt ; ξ) . (12.5)

This is called the training error, since the average loss is evaluated by using the data
that we used for training. In contrast, (12.4) is called the generalization error, since
it evaluates the performance over all possible data (x, y) not used in the process of
training. Since we do not know L , we minimize the training error L train to obtain ξ̂.
A regularization term may be added to L train in order to obtain a regularized optimal
solution ξ̂ by learning.

A loss function is defined similarly in the case of pattern recognition by the
expectation of an instantaneous loss. Even in the case of binary y, y = 0 or 1, we can
use (12.3) as a loss. However, it is more natural to formulate the problem in terms of
logistic regression such that the probability of y is given as a function of ξ · x by

Prob {y| ξ · x} = exp {yξ · x − ψ(ξ · x)} , (12.6)
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where the normalization factor ψ is

ψ(ξ · x) = log {1 + exp(ξ · x)} . (12.7)

This implies

Prob {y = 1 | x; ξ } = exp(ξ · x)

1 + exp(ξ · x)
. (12.8)

The instantaneous loss function is the negative of log Prob {y | ξ · x },

l(x, y; ξ) = −yx · ξ + ψ(ξ · x). (12.9)

In the problem of estimation of parameters ξ in a statistical model {p(x, ξ)}, we
use

l(x; ξ) = − log p(x, ξ), (12.10)

the negative of log likelihood, where only x’s are observed. The generalization error
is

L(ξ) = −Eξ0

[
log p(x, ξ)

]
. (12.11)

where ξ0 is the true parameter, such that x is generated from p
(
x, ξ0

)
. The regression

problem is regarded as an estimation problem to estimate ξ of p(x, y; ξ), where
random variables are (x, y) and we do not care about q(x).

An on-line learning procedure modifies the current candidate ξt at time t to obtain
ξt+1 at the next time based on the current training example (xt , yt ) so as to decrease
the instantaneous loss (Rumelhart et al. 1986). Usually, the negative of the gradient
is used to update ξt ,

ξt+1 = ξt − ηt∇l
(
xt , yt ; ξt

)
, (12.12)

where ∇ is the gradient with respect to ξ and coefficient ηt is called a learning
constant, which may depend on t . Since training data are given one by one, the
change

Δξt = −ηt∇l
(
xt , yt ; ξt

)
(12.13)

is a random variable depending on (xt , yt ). The expectation of ∇l is equal to
∇L(ξ). Therefore, the change Δξt is random but its expectation is in the direc-
tion of −∇L

(
ξt

)
. See Fig. 12.1. Hence, (12.12) is called a stochastic descent learn-

ing method. Amari (1967) might be the first to have used this idea for training a
multilayer perceptron. The method is now well established as the back-propagation
learning method.
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Fig. 12.1 Gradient descent
of expected loss L and
stochastic gradient descent
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A batch learning procedure is an iterative method which uses all the training data
for modifying ξt at one step, such that ξt is modified to ξt+1 by

ξt+1 = ξt − ηt
1

T

T∑
i=1

l
(
xi , yi ; ξt

)
. (12.14)

The two types of learning, batch and on-line, have different merits and demerits.

12.1.2 Natural Gradient: Steepest Descent Direction in
Riemannian Manifold

Given a function L(ξ) in a manifold, it is widely believed that the gradient

∇L(ξ) = ∂

∂ξ
L(ξ) (12.15)

is the direction of the steepest change of L(ξ). In a geographical map with contour
lines, the steepest direction is given by the gradient of the height function H(ξ), that
is ∇H(ξ), which is orthogonal to contour lines. However, this is true only when an
orthonormal coordinate system is used in a Euclidean space.

In a Riemannian manifold, the square of local distance between two nearby points
ξ and ξ + dξ is given by the quadratic form

ds2 = gi j dξi dξ j , (12.16)

where G = (gi j
)

is a Riemannian metric tensor. Note that we use the Einstein con-
vention so that the summation symbol

∑
is omitted in (12.16). Let us change the

current point ξ to ξ + dξ, and see how the value of L(ξ) changes, depending on the
direction dξ. We search for the direction in which L changes most rapidly. In order
to make a fair comparison, the step-size of dξ should have the same magnitude in
all directions, so that the length of dξ should be the same,

gi j (ξ)dξi dξ j = ε2, (12.17)
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where ε is a small constant. We put dξ = εa and require that

|a|2 = gi j a
i a j = 1. (12.18)

Then, the steepest direction of L is the maximizer of

L(ξ + dξ) − L(ξ) = ε∇L(ξ) · a (12.19)

under the constraint (12.18). See Fig. 12.2. By using the variational method of max-
imizing (12.19) under the constraint (12.18), we easily obtain the following formu-
lation:

maximize
a

∇L(ξ) · a − λgi j a
i a j . (12.20)

This is a quadratic problem and the steepest direction is obtained as

a ∝ G−1∇L(ξ). (12.21)

We call
∇̃L(ξ) = G−1(ξ)∇L(ξ) (12.22)

the Riemannian gradient or natural gradient of L , where

∇̃ = G−1∇ (12.23)

is the natural gradient operator.
From the point of view of geometry, the natural gradient is a contravariant vector

Ai = gi j (ξ)∂ j L , (12.24)

Fig. 12.2 Natural gradient
∇̃L of L
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and the ordinary gradient is a covariant vector

A j = ∂ j L(ξ) (12.25)

in the index notation. They are equal when and only when

gi j (ξ) = δi j , (12.26)

that is, when an orthonormal coordinate system is used in a Euclidean space.
The natural gradient learning method, which was suggested in Amari (1967), was

formally introduced in Amari (1998) and defined by

ξt+1 = ξt − ηt ∇̃l
(
xt , yt , ξt

)
. (12.27)

In the batch mode, it is

ξt+1 = ξt − ηt
1

T

T∑
i=1

∇̃l
(
xi , yi , ξt

)
. (12.28)

In the case of statistical estimation where the Fisher information is a Riemannian
metric, the loss function L and the Riemannian metric G is defined by using the
same log likelihood function log p(x, ξ). In this case, the natural gradient method
is regarded as a version of the Gauss–Newton method. However, there are many
other cases where the loss function and the Riemannian metric are not related. The
natural gradient learning method is useful in such cases, too. Independent component
analysis (ICA) is such an example, where the parameter space is a set of mixing
matrices and the Riemannian metric is given by the invariant metric of the underlying
Lie group, but the loss is measured by the degree of independence of unmixed signals.
In the next subsection, we show an interesting new idea of natural gradient using the
“absolute value” of the Hessian as a Riemannian metric (Daupin et al. 2014).

The natural gradient is also used in deep learning (Roux et al. 2007; Ollivier
2015) and in reinforcement learning as a policy natural gradient (e.g., Kakade 2002;
Peters and Schaal 2008; Morimura et al. 2009). Another application is found in
the optimization problem with stochastic relaxation technique (Malagò and Pistone
2014; Malagò et al. 2013; Yi et al. 2009; see also Hansen and Ostermeier 2001).

12.1.3 Riemannian Metric, Hessian and Absolute Hessian

The Newton method uses the Hessian of L(ξ) for obtaining the minimizer of L(ξ)

by solving ∇L(ξ) = 0 recursively. It updates the current ξt to give

ξt+1 = ξt − ηt H−1
(
ξt

)∇l
(
xt , yt , ξt

)
, (12.29)
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where
H(ξ) = ∇∇L(ξ). (12.30)

The natural gradient replaces H by the Riemannian metric G. Therefore, it is inter-
esting to see the relation between G and H.

We study the case where the noise is Gaussian with mean 0 and variance σ2. The
joint probability distribution is written as

p(x, y; ξ) = q(x)√
2πσ

exp

[
− 1

2σ2
{y − f (x, ξ)}2

]
. (12.31)

Hence, the loss function is the same as the negative of the log likelihood except
for the constant. Minimizing L(ξ) is equivalent to maximizing the likelihood of
the unknown parameter ξ. The on-line learning algorithm (12.27) is regarded as
a sequential estimation procedure, and the batch learning algorithm is an iteration
procedure of obtaining the maximum likelihood estimator.

The Fisher information in this case is given by

G(ξ) = ∇∇L(ξ) = Ep(x,y,ξ)[∇∇l(x, y, ξ)]. (12.32)

On the other hand, the Hessian of the loss function L(ξ) is

H(ξ) = ∇∇L(ξ) = Ep(x,y,ξ0) [∇∇l(x, y, ξ)] , (12.33)

where the expectation is taken with respect to the true distribution p
(
x, y, ξ0

)
from

which teacher signal y is generated.
By using (12.3) or by assuming σ2 = 1 in (12.31), we easily have

G(ξ) = Ex
[∇ f (x, ξ)∇ f (x, ξ)T

]
(12.34)

H(ξ) = G(ξ) − Ex
[{

f
(
x, ξ0

)− f (x, ξ)
}∇∇ f (x, ξ)

]
, (12.35)

where Ex is the expectation with respect to q(x). G is in general positive-definite,
but H is not necessarily so. (We discuss the singular case later where G and H
degenerate.) However, H and G are exactly equal at ξ = ξ0. Moreover, they are
equal when f (x, ξ) = f

(
x, ξ0

)
holds. We show later that they are equal at critical

or singular regions in MLP.
Recently, an interesting new idea of defining a Riemannian metric by the “absolute

value” of the Hessian matrix was proposed (Dauphin et al. 2014). The Hessian is
decomposed as

H = OT ΛO, (12.36)

where O is an orthogonal matrix and Λ = diag (λ1, . . . ,λn) is a diagonal matrix
having eigenvalues of H as the diagonal elements. The matrix of the absolute value
of H is defined by
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|H| = OT diag (|λ1| , . . . , |λn|) O. (12.37)

When |H| is used as a Riemannian metric, the natural gradient method becomes

ξt+1 = ξt − ηt

∣∣H (ξt

)∣∣−1 ∇l
(
xt , yt , ξt

)
. (12.38)

The method is called the saddle-free Newton method (SFN) and its good performance
is demonstrated. When ξ′ is a saddle point, the Newton method stabilizes the saddle
and converges to it. Hence, the Newton method does not work well. It is shown
that most critical points of L are saddles in high dimensions (Dauphin et al. 2014).
Hence, the new idea is introduced as a method of avoiding saddle points, but keeping
the good performance of the Newton method. Any natural gradient method is not
trapped in a saddle whereas the Newton method is. Moreover, the behaviors of
the Fisher information-based natural gradient and the absolute-value-based Hessian
natural gradient are the same at around the optimal point ξ0, both enjoying the Fisher
efficiency. It is also interesting to see that their behaviors are the same in the critical
or singular regions studied later, which are the main source of plateau phenomena
(retardation of learning).

12.1.4 Stochastic Relaxation of Optimization Problem

We show a problem in which the natural gradient plays an important role. Let us
consider the problem of searching for the minimizer of f (x)over x ∈ X . The problem
is difficult to solve when f is not convex, in particular when x is discrete. The integer
programming is a typical example of the discrete type.

Let us introduce a family of probability distribution M = {p(x, ξ)} and consider
the expectation

L(ξ) = E p(x,ξ)[ f (x)]. (12.39)

The problem of searching for the minimizer of L(ξ) with respect to ξ is called the
stochastic relaxation of the original problem (Malagò and Pistone 2014; see also
Hansen and Ostermeier 2001). It changes the problem of a search in X to a search
in M , so the gradient descent method is applicable even when X is discrete. Since
M is a Riemannian manifold, we can apply the natural gradient method,

ξt+1 = ξt − ηt G
(
ξt

)−1 ∇L
(
ξt

)
. (12.40)

By choosing model M carefully, it works well. Yi et al. (2009) proposed an efficient
way of implementing the natural gradient.
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12.1.5 Natural Policy Gradient in Reinforcement Learning

We summarize the natural gradient method in reinforcement learning, following
Peters and Schaal (2008). It is called the natural policy gradient method, formulated
in the framework of the Markov decision process. See a survey paper by Grond-
man et al. (2012). Let us consider a system having state space X = {x} and action
space U = {u}. At each discrete time t , an action is chosen, depending on the cur-
rent state xt , subject to policy π (u|xt ), which specifies the probability (density) of
action ut . We assume that it is a parameterized family of conditional probabilities
specified by a vector parameter θ, denoted as π(u|x;θ). The state transition takes
place stochastically depending on the current xt and ut , and its probability (density)
function is given by p (xt+1 |xt , ut ). While a state transition takes place, an instan-
taneous reward is derived, which is a function of the current xt and ut , written as
r = r (xt , ut ). See Fig. 12.3.

The expected reward at time t is a sum of the current reward rt and future rewards
rt+1, rt+2, . . ., but future rewards are discounted. Hence, the expected reward at state
x, including future rewards, is written as

V π(x) = E

[ ∞∑
t=0

γt rt | x0 = x

]
, (12.41)

where γ < 1 is a discount factor. It depends on policy π or its parameter θ. This is
called the state-value function. We also define

Qπ(x, u) = E
[∑

γt rt | x, u
]
, (12.42)

which is the expected reward when the state is at x and action u is chosen. The
expectation is taken throughout all the possible trajectories of (xt , ut ) pairs.

ut ut+1 ut+2

p p
xt xt+1 xt+2

rt rt+1 rt+2

π π π

Fig. 12.3 Markov decision process, reward and action
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Let us fix an initial state x = x0. The expected reward by taking the policy
π(u |x;θ ) is

J (θ) = E
[∑

γt rt | θ
]
, (12.43)

which is rewritten as

J (θ) = E

[
dπ(x)

∫
π(u|x;θ)r(x, u)dxdu

]
, (12.44)

where
dπ(x) =

∑
t

γt p (xt ) δ (x − xt ) (12.45)

is the discounted probability of a sequence of states.
We define the Fisher information matrix at the current state x by

F(θ|x) =
∫

π(u|x)∇θ log π(u|x) {∇θ log π(u|x)}T du. (12.46)

The entire Fisher information matrix is its expectation along all the trajectories,

G(θ) =
∫

dπ(x)F(θ|x)dx. (12.47)

See Kakade (2001), Peters and Schaal (2008).
The natural gradient method, called the natural policy gradient or natural actor-

critic, is given by
θt+1 = θt + ηG−1 (θt )∇θ J (θt ) . (12.48)

However, this is computationally heavy. A good idea is to approximate the state-
action value function by a linear combination of adequate basis functions {ai (x, u)}
as

Qπ(x, u) =
∑

ai (x, u)wi = a(x, u) · w, (12.49)

where w is the parameters of weight to be adjusted. We choose

a(x, u) = ∇θ log π(u|x;θ) (12.50)

as basis functions. Since the gradient of the expected reward is written as

∇θ J (θ) =
∫

dπ(x)

∫
∇θπ(u|x,θ)Qπ(x, u)dudx, (12.51)

its gradient becomes
∇θ J = Gw. (12.52)
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Therefore, the natural gradient takes a very simple form as

∇̃θ J (θ) = G−1∇θ J = w. (12.53)

In order to implement the natural policy gradient, we need to evaluate w which
gives the best approximation of Q. We use the TD error

δt = rt + γV π (xt+1) − V π (xt ) (12.54)

and solve the linear regression problem recursively as

wt+1 = wt + αδt a (xt ) , (12.55)

where the basis function a(x) is

a(x) =
∫

π(u|x)a(x, u)du. (12.56)

It is reported that the natural policy gradient demonstrates excellent performance in
many cases.

12.1.6 Mirror Descent and Natural Gradient

The mirror descent method was introduced by Nemirovski and Yudin (1983) (see also
Beck and Teboulle 2003) as a tool to search for the minimum of a convex function
f (θ). It is used in convex optimization problems with a constrained region. It uses
another convex function ψ(θ) together with its Legendre dual ϕ(η). They implicitly
use a dually flat structure together with a Riemannian metric

G(θ) = ∇∇ψ(θ). (12.57)

The dual coordinates
η = ∇ψ(θ) (12.58)

are used to update the current ηt as

ηt+1 = ηt − ε∇ f (θt ) , (12.59)

where ε is a learning rate. Since both η and ∇ f are covariant quantities, it is invariant.
The result is transformed back to the primal coordinates by

θt+1 = ∇ϕ
(
ηt+1

)
. (12.60)
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Since
Δθt = G−1Δηt , (12.61)

we have
Δθt = −εG−1∇ f (θt ) . (12.62)

This is the natural gradient method with the Riemannian metric G(θ). See Raskutti
and Mukherjee (2015).

Since the underlying manifold is dually flat, e- and m-projections can be used
to project a point on the restricted region. See sparse signal processing in the next
chapter.

12.1.7 Properties of Natural Gradient Learning

12.1.7.1 Natural Gradient Learning is Fisher Efficient

On-line learning is a sequential procedure of modifying the current estimator ξt by
using one example (xt , yt ) at a time. Once an example has been used, it is discarded
and not used again. This is useful for the estimator ξ̂t to trace the change when
the optimal ξ0 is slowly changing over time or suddenly changes at certain times.
However, when the true target is fixed, this might cause loss of efficiency compared
with the maximum likelihood estimator which is obtained by batch learning using all
the data. This would be a cost to be paid for the benefit of traceability. To our surprise,
this is not true. On-line learning can attain Fisher efficient estimation asymptotically,
provided the learning constant is chosen adequately. The following theorem shows
this (Amari 1998).

Theorem 12.1 The estimator obtained by on-line natural gradient learning

ξ̃t+1 = ξ̃t − 1

t
∇̃l
(

xt , yt , ξ̃t

)
(12.63)

is Fisher efficient, attaining the Cramér–Rao bound asymptotically.

Proof Let us denote the error covariance matrix of the estimator at time t by

Ṽt+1 = E
[(

ξt+1 − ξ0

) (
ξt+1 − ξ0

)T
]
, (12.64)

where ξ0 is the true value of ξ. We expand the loss at ξt as

∇l
(
xt , yt , ξt

) = ∇l
(
xt , yt , ξ0

)+ ∇∇l
(
xt , yt , ξ0

) · (ξt − ξ0

)
. (12.65)
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Then, subtracting ξ0 from both sides of (12.63) and substituting it in (12.64), we
have

Ṽt+1 = Ṽt − 2

t
Ṽt + 1

t2
G−1 + O

(
1

t3

)
, (12.66)

where

E
[∇l

(
xt , yt ; ξ0

)] = 0, (12.67)

E
[∇∇l

(
xt , yt ; ξ0

)] = G
(
ξ0

)
(12.68)

are taken into account. We also note that

G
(
ξt

) = G
(
ξ0

)+ O

(
1

t

)
. (12.69)

Then the solution of (12.66) is asymptotically

Vt = 1

t
G−1, (12.70)

which proves the theorem. �

12.1.7.2 Natural Gradient is Saturation Free

Consider a regression problem, where the output is written as

y = f (x, ξ) + ε. (12.71)

First we explain a simple perceptron, where f is written as

f (x, ξ) = ϕ(w · x). (12.72)

Here, we neglect the bias term for simplicity. The parameter is a vector ξ = w and
the activation function ϕ is a sigmoid function, for example,

ϕ(u) = tanh u. (12.73)

The gradient is written as

∇l(x, y,w) = −(y − f )ϕ′(w · x)x. (12.74)

When the absolute value of w is large, function ϕ(w · x) saturates for most x, becom-
ing nearly equal 1 or −1. This is the saturation problem, where the gradient becomes
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almost equal to 0 because ϕ′ ≈ 0, and ordinary stochastic gradient descent learning
becomes slow.

This is not serious in the case of a simple perceptron, but is serious in the case
of multilayer perceptrons used in deep learning, where f (x, ξ) is composed of a
concatenation of many f ’s. We may write the output as

f (x, ξ) = ϕ (Wkϕ (Wk−1ϕ . . . ϕ (W1x))) , (12.75)

in the case of MLP, where W j is the connection weight matrix of the j th layer to the
( j + 1)th layer, ξ = (W1, . . . , Wk). Its derivative with respect to W1, for example,
includes the product of many ϕ′’s. Hence, it is almost vanishing in many cases. This
is considered as a flaw of back-propagation in deep learning.

The natural gradient learning method is free of such a saturation problem. The
gradient is written as

∇l(x, y, ξ) = −(y − f )∇ f (x, ξ). (12.76)

The Fisher information is given by

G(ξ) = E
[∇ f (x, ξ)∇ f (x, ξ)T

]
. (12.77)

The magnitude of the ordinary gradient would be very small in many cases but the
natural gradient is different. We evaluate the magnitude of the natural gradient vector

∇̃l(x, ξ) = G(x, ξ)−1∇l(x, ξ) (12.78)

by its Riemannian magnitude,

E
[
‖∇̃l‖2

]
= E

[
∇̃lT G∇̃l

]
. (12.79)

Theorem 12.2 The magnitude of the natural gradient is given by

E
[
‖∇̃l‖2

]
= tr

(
Ḡ(ξ)G−1(ξ)

)
, (12.80)

where
Ḡ(ξ) = Ep(x,y,ξ0)

[∇l(x, ξ)∇l(x, ξ)T
]
. (12.81)

It does not vanish even when ϕ′ is small. Moreover,

E
[
‖∇̃l‖2

]
≈ k (12.82)

in a neighborhood of the optimal ξ0, where k is the dimension of ξ.
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Proof From (12.78), we have

E
[
‖∇̃l‖2

]
= Ep(x,y,ξ0)

[
tr G(ξ)G−1(ξ)∇l(x, ξ)∇l(x, ξ)T G−1(ξ)

]
, (12.83)

which proves (12.80). When ξ = ξ0, we easily have (12.82). �

12.1.7.3 Adaptive Natural Gradient Learning

The natural gradient method uses G−1
(
ξt

)
, so that we need to calculate the inverse

of G
(
ξt

)
at each step. When the number of parameters is large, this is computa-

tionally intractable. Moreover, calculation of G(ξt ) is not easy in the case when the
distribution q(x) of x is unknown. To avoid this situation, an adaptive method of
obtaining G−1

(
ξt

)
recursively has been proposed (Amari et al. 2000). By using the

Taylor expansion of
G
(
ξt+1

) = G
(
ξt − ηt G−1∇l

)
(12.84)

and inverting it, we have an adaptive method of calculating G−1
t = G−1

(
ξt

)
recur-

sively by

G−1
t+1 = (1 + εt ) G−1

t

(
ξt

)− εt G−1
t ∇l

(
xt , yt , ξt

)∇l
(
xt , yt , ξt

)T
G−1

t , (12.85)

where εt is another learning constant.
Park et al. (2000) demonstrated performance of adaptive natural gradient learning

using a number of simple examples, and confirmed that its performance is excellent.
See also Zhao et al. (2015). The adaptive method can be used to calculate the inverse
of the Hessian,

H−1
t+1 = (1 + εt ) H−1

t − εt H−1
t ∇∇l

(
xt , yt , ξt

)
H−1

t . (12.86)

12.1.7.4 Approximation and Practical Implementation of Natural
Gradient

It is not easy to implement the natural gradient in a large network because of a large
computational cost. There are many trials to overcome the difficulty and to give a
good approximate solution. See Martens (2015) for the perspectives of the natural
gradient method.

Martens and Grosse (2015) proposed an efficient method of approximating natural
gradient descent in deep neural networks, called the Kronecker-factored approximate
curvature (K-FAC). It uses two stages for the approximation of the Fisher informa-
tion. One is to use the Kronecker product of the matrices due to error terms and
activation terms, and the expectation is taken separately for calculating the Fisher
information. The other is to use the tridiagonal approximation for the inverse of
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the Fisher information matrix (the Riemannian metric). A deep network consists
of a concatenation of many layers, and the Fisher information matrix has a block
structure. The tridiagonal approximation neglects off-diagonal blocks except for the
blocks corresponding to consecutive (i − 1, i, i + 1) layers. It is demonstrated that
this is not only computationally tractable but its performance is excellent.

We remark that the two approximations do not destroy most of the singular struc-
ture of the original Fisher information, studied in the next section. Since the singular
regions are the main cause of retardation in learning, the K-FAC works well, getting
rid of the plateau phenomena.

12.1.7.5 Adaptive Learning Constant

The dynamical behavior of learning depends on the learning constant ηt . When the
current ξt is far from the optimal value ξ0, it is desirable to use large ηt , because we
need to shift ξt toward ξ0 with a large step-size. On the other hand, when ξt is near
the optimal value, if ηt is large, the stochastic fluctuation of ∇l dominates so that it
is better to choose a small ηt . When the optimal value of the target is fixed, a good
choice of learning constant is given by stochastic approximation,

∞∑
t=1

ηt > ∞,

∞∑
t=1

η2
t < ∞. (12.87)

Whenηt satisfies (12.87), the estimatorξt converges to the optimalξ0 with probability
one. A typical case is given by

ηt = c

t
. (12.88)

When the target does not move, the trade-off between the speed of convergence and
the accuracy of estimation is given in Amari (1967) for a fixed η. For the cases
when the target moves, the idea of modifying ηt adaptively depending on the current
situation of the estimator was considered from the early time. An excellent idea of
modifying the learning constant was proposed by Barkai et al. (1995) in the case
when y is binary. Amari (1998) generalized it and analyzed its behavior. A new
adaptive learning method is given by

ξt+1 = ξt − ηt ∇̃l
(
xt , yt ; ξt

)
, (12.89)

ηt+1 = ηt exp
{
α
[
βl
(
xt , yt ; ξt

)− ηt
]}

, (12.90)

where α,β are constants. Here, the natural gradient method is fortified by a learning
rule of learning constant (12.90). The learning rate ηt increases, roughly speaking,
when the instantaneous loss l

(
xt , yt ; ξt

)
is large, which implies that the target lies

far away and ηt decreases when the target is closer.
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In order to analyze its behavior mathematically, we use the continuous-time ver-
sion of the learning equation,

d

dt
ξt = −ηt G−1

(
ξt

) 〈∇l(x, y; ξt )〉, (12.91)

d

dt
ηt = αηt

{
β〈l (x, y; ξt

)〉 − ηt
}
, (12.92)

where the equations are averaged over possible input–output pairs (xt , yt ), 〈 〉 rep-
resenting the average with respect to p(x, y).

By using the Taylor expansion

〈∇l
(
xt , yt ; ξt

)〉 = 〈∇l
(
xt , yt ; ξ0

)〉 + 〈∇∇l
(
xt , yt ; ξ0

) · (ξt − ξ0

)〉
= G0

(
ξt − ξ0

)
, (12.93)

where we put G0 = G
(
ξ0

)
, we have

d

dt
ξt = −ηt

(
ξt − ξ0

)
, (12.94)

d

dt
ηt = αηt

{
β

2

(
ξt − ξ0

)T
G0
(
ξt − ξ0

)− ηt

}
. (12.95)

We introduce the squared error at time t by

et = 1

2

(
ξt − ξ

)T
G0
(
ξt − ξ0

)
. (12.96)

Then, the equations reduce to

d

dt
et = −2ηt et , (12.97)

d

dt
ηt = αβηt et − αη2

t , (12.98)

when ξ0 is fixed. The behaviors of the error et and learning constant ηt described
by (12.97) and (12.98) are interesting. The origin (0, 0) is its stable equilibrium, so
both et and ηt converge to 0. The solution is written approximately as

et = 1

β

(
1

2
− 1

α

)
1

t
, (12.99)

ηt = 1

2t
, (12.100)
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for large t . This shows that the error converges to 0 in the order of 1/t as t goes to
infinity when ξ0 is fixed. When the target changes over time, ξt traces its change
nicely by modifying ηt .

12.2 Singularity in Learning: Multilayer Perceptron

The multilayer perceptron (MLP), proposed by Rosenblatt (1961), is a universal
machine that can approximate any input–output function, provided it includes a suf-
ficiently large number of hidden neurons. Although it seemed to be gradually being
replaced by new powerful learning machines such as the support vector machine
(SVM), MLP has been revived in the 21st century in “deep learning”, where a network
has a considerably large number of layers. Lots of new tricks are proposed to facilitate
deep learning, including unsupervised learning (self-organization) as preprocessing,
the convolutional structure, and the drop-out technique in supervised learning. Deep
learning has recorded benchmark performances, winning most competitions on pat-
tern recognition. See Schmidhuber (2015) for example. Researchers are astonished
by the reincarnation of the multilayer perceptron. The back-propagation learning
method is used at the final stage.

There is, however, a serious problem in the parameter space of a multilayer percep-
tron. It includes singularities, in the sense that the same output function is realized
by continuously many parameters in a specific region. One cannot determine the
parameter uniquely in such a region, and so the parameter is not identifiable. The
Fisher information matrix degenerates in this region. This causes the dynamics of
learning to become extremely slow, which is known as a critical slowdown or the
plateau phenomena.

The present section studies typical singular structure in the manifold of multilayer
perceptrons and clarifies its implications for statistical inference. The dynamical
behavior of learning near singularities is studied in detail. Finally, it is shown that
the natural gradient learning method, including SFN, overcomes these difficulties.

12.2.1 Multilayer Perceptron

The multilayer perceptron is a layered machine composed of artificial neurons, which
receives input x and emits output y. The behavior of an analog artificial neuron is
described as follows: It receives a vector input signal x, calculates a weighted sum
of inputs and subtracts a threshold as

u =
∑

wi xi − h = w · x − h, (12.101)
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where w = (w1, . . . , wn). It emits an output

y = ϕ(u), (12.102)

where ϕ is a sigmoidal function. We use

ϕ(u) =
√

2

π

∫ u

0
exp

{
− s2

2

}
ds, (12.103)

because this is convenient for obtaining explicit analytical solutions. The coefficients
wi are called the synaptic weights. In order to make descriptions simpler, we put
h = 0 in the following.

A multilayer perceptron consists of many layers in deep learning, but we consider
here only three layers, an input layer, a hidden layer and an output layer (Fig. 12.4).
The i th neuron of the hidden layer calculates the weighted sum of input x as

ui = wi · x (12.104)

and emits output ϕ (ui ), where wi is the weight vector of the i th hidden neuron. We
consider a simple case that the output layer consists of only one output neuron. It
calculates a weighted sum of the outputs of the hidden neurons and the final output
is written as

y =
∑

viϕ (wi · x) , (12.105)

where vi are the weights of the output neuron. We may apply a sigmoidal nonlinear
function to y, but it is only a nonlinear scale change. So we use a linear output neuron,
but a nonlinear function is used when the output neurons are connected to the next
layer as its input.

A multilayer perceptron is specified by synaptic weights

ξ = (w1, . . . ,wm; v1, . . . , vm) . (12.106)

Let M be the parameter space of perceptrons. Then, it is an N -dimensional manifold,
where ξ is a coordinate system including N = (n + 1)m components. We write the
input–output relation of the perceptron specified by ξ as

Fig. 12.4 Multilayer
perception
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. output y
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y = f (x, ξ) =
m∑

i=1

viϕ (wi · x) . (12.107)

Learning takes place in the manifold M , where the current value ξ is modified by a
stochastic gradient descent method using the current input–output example (xt , yt ).

12.2.2 Singularities in M

The manifold M includes a set of points which have the same output functions

f (x, ξ) = f
(
x, ξ′) , (12.108)

for ξ �= ξ′. Two such points ξ and ξ′ are said to be equivalent and are denoted by

ξ ≈ ξ′, (12.109)

since their output functions are the same. When ξ has an equivalent point in M
other than itself, we cannot identify ξ uniquely from the output function. There are
two types of unidentifiability, originating from the invariance under the following
transformations of parameters:

1. Sign change: ξ ≈ −ξ: This is because ϕ is an odd function, ϕ(−u) = −ϕ(u),
so that f (x, ξ) = f (x,−ξ). The unidentifiability due to the sign change is simple,
and we may eliminate the unidentifiability by restricting the region within vi ≥
0, i = 1, . . . , m. However, the boundary vi = 0 causes singularities, as will be
shown soon.

2. Permutation: Let
∏

be a permutation of indices and i be transformed to i ′ as
i ′ =∏ i . Then,

ξ = (w1,w2, . . . ,wm; v1, . . . , vm) ≈ ξ′ = (w1′ , . . . ,wm ′ ; v1′ , . . . vm ′) .

(12.110)

We divide M by the equivalence relation ≈ and put

M̃ = M/ ≈ . (12.111)

Equivalent points in M are reduced to one point in M̃ , the space of the output
functions of multilayer perceptrons. M̃ is not a manifold in the exact mathematical
sense, as will be shown in the following, because it includes singular points due to
unidentifiability. It is a manifold if we simply remove the singular points. M̃ is called
a behavior manifold or neuromanifold, although it is not a manifold in the exact
sense.
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We explain the singularity by using simple examples. Consider a very simple
perceptron consisting of one hidden neuron, which is included in a larger model as
a subnetwork. Its output function is

f (x, ξ) = vϕ(w · x) (12.112)

and the parameter space M is ξ = (w, v). When v = 0, whatever w is, the output
function is 0. On the other hand, when w = 0, whatever v is, the output function is
also 0, because ϕ(0) = 0. We call the set of these points a critical or singular region
R of M , that is,

R = {ξ |v = 0 or w = 0 } . (12.113)

All the points in R are equivalent. By dividing M by the equivalence relation, M̃
consists of two parts (not four because (w, v) and (−w,−v) are equivalent), which
are connected by a single point corresponding to v = 0 or w = 0. It is a singular
point in M̃ . See Fig. 12.5. More generally, we consider the following eliminating
singularity.

(1) Eliminating singularity: When vi = 0, whatever the value of wi is, any wi gives
the same output function. Hence, wi is not identifiable in this case. When wi = 0,
whatever vi is, the output of the neuron is 0. Such a neuron has no effect on the
output and it can be eliminated.

Consider a subnetwork consisting of two hidden neurons i and j . Their output
function is

f (x, ξ) = viϕ (wi · x) + v jϕ
(
w j · x

)
. (12.114)

(2) Overlapping singularity: When two neurons i and j in the hidden layer have
identical weight vectors,

wi = w j = w, (12.115)

their contribution to the output is

viϕ (wi · x) + v jϕ
(
w j · x

) = (vi + v j
)
ϕ(w · x). (12.116)

Fig. 12.5 Eliminating
singularity
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Therefore, the output is the same whatever values vi and v j take, as long as
vi + v j is equal to a fixed value v. That is, the output is the same on the line
satisfying

vi + v j = v (12.117)

for any constant v. Hence, vi and v j themselves are not identifiable. This occurs
when two neurons have the same weight vector wi = w j = w, with their weight
vectors overlapping completely. A similar situation holds when wi = −w j , but
we omit this case for simplicity’s sake.

The critical region due to the overlapping singularity is given by

Roi j (w, v) = {ξ ∣∣wi = w j = w, vi + v j = v
}
. (12.118)

See Fig. 12.6, where Roi j (w, v) is mapped to a single point in M̃ . The images of the
Roi j (w, v) form a continuous submanifold as w and v vary. The critical region in M
is written as

R =
⎧
⎨
⎩ξ

∣∣∣∣∣∣
∏

i

vi |wi |
∏
i �= j

∣∣wi − w j

∣∣ = 0

⎫
⎬
⎭ , (12.119)

which is a union of critical submanifolds (12.118).
We consider an equivalence class Ri j (w, v) specified by two parameters w and

v, such that any networks in this class have the same output function

f (x;w, v) = vϕ(w · x). (12.120)

It consists of three parts, Ro,Rei and Rej ,

Ri j (w, v) = Ro ∪ Rei ∪ Rej , (12.121)

wi

wj

v =vi j+v

v vi j+v =

wi j=w

.v
v

Fig. 12.6 Overlapping singularity
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where

Ro = {
ξ
∣∣vi + v j = v, wi = w j = w

}
, (12.122)

Rei = {
ξ
∣∣vi = 0, v j = v, wi is arbitrary, w j = w

}
, (12.123)

Rej = {
ξ
∣∣v j = 0, vi = v, w j is arbitrary, wi = w

}
. (12.124)

Ro is a one-dimensional subspace corresponding to the overlapping singularity, where
z = vi − v j is a free parameter in it, keeping the sum vi + v j = v constant. Rei and
Rej correspond to the eliminating singularity. They are n-dimensional, since wi and
w j , respectively, can take any values. Ri j (w, v) is an elementary critical region which
is a union of three parts, as is shown in Fig. 12.7. All the points in it are mapped to a
single point f = vϕ(w · x) in the behavior manifold M̃ . This is a singular point in M̃ .

There are infinitely many such critical regions, because we have an elementary
critical region for each w and v and they are distributed continuously. So they form
a continuum of singular points in the behavior manifold M̃ where w and v are
parameters. The region is further contracted when

v|w| = 0 (12.125)

holds. Such critical regions exist for each pair (i, j) in a larger network and they
intersect. So M includes a rich net of critical regions spreading over M .

The trajectory of learning is given by (12.12) in M . It is mapped to M̃ and it may
pass through a critical region in M or a singular point in M̃ . We study the dynamical
behavior of learning near singularities.

The loss function takes the same value in a critical region Ri j (w, v), so that its
derivative in the tangent directions of Ri j (w, v) is always 0. This also implies that
the Fisher information degenerates in the critical region Ri j of M , because there are
directions a in Ri j such that

f (x, ξ) = f (x, ξ + ca) (12.126)

Fig. 12.7 Critical region
Ri j (w, v)

wi wj

Rovi=0 vj=0

Rei Rej

z



302 12 Natural Gradient Learning and Its Dynamics in Singular Regions

holds for any c, as is derived from (12.118). a is one-dimensional in region Ro and
n-dimensional in regions Rei and Rej (Fig. 12.7). Hence, the score function, that is
the derivative of log-likelihood, becomes 0 in these directions. This implies that the
Fisher information matrix has null directions in which

aT G(ξ)a = 0. (12.127)

So it degenerates and G−1 diverges on the critical region. The Fisher information
exists and is non-degenerate in M̃ except for singular points. No tangent space exists
at a singular point of M̃ . This is the same for the absolute Hessian metric and

aT |H(ξ)|a = 0 (12.128)

holds in R in the direction satisfying ξ ≈ ξ + a.
A probability distribution p(x, y, ξ) accompanies each point of M and M̃ , but

these probability distributions do not form a regular statistical model, because the
non-degenerate Fisher information does not exist in critical regions or at singular
points. We will discuss how the singularity affects statistical inference in a later
subsection.

12.2.3 Dynamics of Learning in M

Multilayer perceptrons suffer from two types of flaw in their learning behavior. One
is local minima such that the global minimum might not be attained by the gradient
method. The second is the slowness of convergence, because the trajectory of learning
is often trapped on a plateau, staying there for a long time before escaping from it
(Amari et al. 2006). This is mostly due to the symmetric structure, such that its
behavior is invariant under sign changes and permutations of hidden neurons.

Geometrically speaking, the plateau phenomena are given rise to by the singular
structure. A critical region forms a plateau. We will analyze the dynamics of vanilla
stochastic gradient learning in the neighborhood of a critical region. We will also
show that the natural gradient is free of the plateau phenomena.

In order to analyze the dynamics, we use a very simple model consisting of
two hidden neurons described in (12.114). Such simple models are embedded in a
general perceptron as parts and cause a serious slowdown in learning. Instead of the
difference Eq. (12.12) of stochastic descent learning, we use the averaged version in
the continuous time,

ξ̇(t) = −η〈∂l (x, y, ξ(t))

∂ξ
〉, (12.129)

where 〈 〉 is the average with respect to the joint probability distribution p(x, y, ξ0)

of the true or teacher system from which training examples are generated. We fur-
ther assume that the probability distribution of input x is subject to the Gaussian
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distribution N (0, I) with mean 0 and covariance matrix I, the identity matrix. These
assumptions are useful for obtaining explicit solutions.

In order to analyze the behavior of dynamics (12.129) consisting of two hidden
neurons, we use a new coordinate system ζ (Wei et al. 2008),

ζ = (u, z, s, r), (12.130)

where

u = w2 − w1, s = v1w1 + v2w2

v1 + v2
, (12.131)

z = v1 − v2

v1 + v2
, r = v1 + v2 (12.132)

and we use suffixes 1, 2 instead of i, j . The critical region R = R12(w, v) is given
in this new coordinate system by

R = {u = 0 or z = ±1} , (12.133)

in which s = w and r = v hold. We divide it into two parts R = Ro ∪ Re,

Ro = {ζ| u = 0} , (12.134)

Re = {ζ| z = ±1} , (12.135)

where Ro is the overlapping singularity and Re = Re1 ∪ Re2 is the eliminating sin-
gularity.

The dynamics (12.129) are described in the new coordinate system as

ζ̇ = −ηTTT 〈∂l(x, y, ζ)

∂ζ
〉, (12.136)

where T is the Jacobian matrix of the coordinate transformation from ξ to ζ,

T = ∂ζ

∂ξ
. (12.137)

The output function f is written as

f (x, ζ) = 1

2
r(1 + z)ϕ

[{
s + 1

2
(z − 1)u

}
· x
]

+ 1

2
r(1 − z)ϕ

[{
s + 1

2
(z + 1)u

}
· x
]

(12.138)
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in terms of the new coordinates. We expand it in the Taylor series in the neighborhood
of Ro,

f (x, ζ) = rϕ(s · x) + 1

8

(
1 − z2

)
u′Ju, (12.139)

J = ∂2ϕ(s · x)

∂s∂s
, (12.140)

where higher-order terms of u are neglected. We then have the learning dynamics in
terms of ζ = (u, z) in the neighborhood of Ro. The dynamics concerning variables s
and r are subject to the usual differential equations (fast dynamics) and their values
converge rapidly to their equilibrium values, even when the behaviors of u and z are
suffering from a critical slowdown (slow dynamics). Hence, we analyze the equations
concerning u and z, where s and r are assumed to have converged to their equilibrium
values w and v. The resultant dynamics are

u̇ = 2
(
1 − z2

)
Ku, (12.141)

ż = − z
(
z2 + 3

)

r2
u′Ku, (12.142)

where
K = r

4
〈{y − f (x, ζ)} J〉. (12.143)

It is clear that
dζ

dt
= 0 (12.144)

in the region R = Ro ∪ Re, so any points in R are equilibria. The stability of the
equilibria depends on K. We show the results without proofs (which are technical
and complicated but not difficult, see Wei et al. 2008; Wei and Amari 2008).

Theorem 12.3 When the teacher output function is in the critical region, the equi-
libria are stable.

This case occurs when the system is over-realizable, having redundant parameters.

Theorem 12.4 When the teacher output function is outside the critical region, we
have three cases, depending on the eigenvalues of K:

(1) The equilibrium solutions on Ro satisfying |z| > 1 are stable and those satisfying
|z| < 1 are unstable when K is positive-definite.

(2) The equilibrium solutions on Ro satisfying |z| < 1 are stable and those satisfying
|z| > 1 are unstable when K is negative-definite.

(3) The solutions on Ro are unstable when some eigenvalues are positive and some
negative.
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We further analyze the trajectories of the solutions in the neighborhood of Ro. Let
us introduce a function

h(u) = 1

2
|u|2, (12.145)

which shows how far the current ζ is from Ro. Its time derivative is given, from
(12.141) and (12.142), as

ḣ(u) = uT u̇ = 2r2
(
z2 − 1

)

z
(
z2 + 3

) ż. (12.146)

The equation is integrable, and the solution is

h(u) = 2r2

3
log

(
z2 + 3

)3
|z| + c, (12.147)

where c is an arbitrary constant that specifies a trajectory.

Theorem 12.5 The trajectories of learning are

h(u) = 2r2

3
log

(
z2 + 3

)2
|z| + c (12.148)

in the neighborhood of Ro.

The family of trajectories shows how the dynamics proceed in the neighborhood
of Ro. The behaviors are the same for any ξ ∈ Ro, but their stabilities depend on ξ
and K. See Fig. 12.8. When ξ0 is in R, R is stable. When K is positive-definite or
negative-definite, the trajectory starting from the basin of attraction reaches a stable
point in Ro and is trapped in it, fluctuating in it randomly before escaping from it.

12.2.4 Critical Slowdown of Dynamics

We consider the two cases separately.

Case 1: The teacher function is in R. When the number of hidden neurons is larger
in the model network (student network) to be trained than in the teacher network
(true network), some neurons are redundant because the optimal solution is realized
by using a smaller number of neurons. This is the over-realizable case. In this case,
elimination of neurons or overlap of synaptic weight vectors occurs, implying that
the optimal solution is in R.



306 12 Natural Gradient Learning and Its Dynamics in Singular Regions

Fig. 12.8 Landscape of
error function and learning
trajectory
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When the teacher network is ξo ∈ R, (12.143) is written as

K = r

4
〈e ∂2ϕ

∂s∂s
〉, (12.149)

where
e = 〈 f (x, ζ) − f

(
x, ζ0

)〉 (12.150)

is the error term and is 0 when ζ ∈ R, in particular, when u = 0. By expanding the
error term, we can easily obtain

K = O
(|u|2) . (12.151)

This implies that the dynamics of u are

du
dt

= O
(|u|3) . (12.152)

Hence, the speed of convergence of u to 0 is extremely slow, taking a long time for
training (Fig. 12.9a). This is frequently observed in simulations.

Case 2: The optimal solution lies outside R. Points in R are equilibrium solutions.
K is not small in this case, because the error term is not small at R. When K is
positive-definite or negative-definite, the part of Ro, |z| > 1 or |z| < 1, respectively,
is stable but the other part is unstable. The landscape of the loss function is shown in
this case in Fig. 12.8, where Ro is shown by the solid line. Starting ζ at some initial
point belonging to the basin of attraction, the state is attracted to the stable part of Ro.
See Fig. 12.9b, c. The value of the loss function is the same and its derivative is 0 on
Ro since all points in Ro are equivalent. However, this is not the optimal point. The



12.2 Singularity in Learning: Multilayer Perceptron 307

Fig. 12.9 Trajectories of
learning near singularity: a
Teacher is at singularity; b
|z| < 1 is stable; c |z| > 1 is
stable
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state fluctuates in the neighborhood of Ro by stochastic dynamics due to randomly
selected input x. Thus, a random walk of the state takes place in the neighborhood of
Ro and the state eventually reaches the boundary |z| = 1 of the stable region. It thus
enters the unstable region and then escapes from Ro immediately, moving toward
the true optimal point. However, it takes a long time before leaving the stable critical
region. See Fig. 12.10. Precisely speaking, the fluctuation around Ro is not a random
walk, because there are systematic flows out of the stable region in the neighborhood
of Ro, but the flow is very small when u is small.

Although the trajectories passing through R have incoming flows and outgoing
flows at R, this is completely different from those at a saddle point. The basin of
attraction has measure 0 in the case of a saddle. Therefore, it is at measure 0 that the
state reaches the saddle. Moreover, the state escapes from the saddle quickly by a
small perturbation. On the other hand, the basin of attraction of R has a finite measure
and the trajectory exactly reaches R in this case. A small perturbation moves the state
but it again reaches R. This does not prevent a trajectory reaching R. A saddle does
not cause any serious effect on the slowdown of dynamics. It is a critical region that
causes a critical slowdown.
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Fig. 12.10 Trajectory of
learning near the singularity

Learning trajectory near the singularity

L( )ξ

R0

Fig. 12.11 Trajectories in M̃

.

Basin of attraction

We can consider the same dynamics in M̃ where R is reduced to one point by the
equivalence. The point corresponding to R is a singular point. It is a Milnor attractor in
M̃ , of which the basin of attraction has a finite measure (Milnor 1985). The trajectories
enter it and then emerge from it (Fig. 12.11). A general multilayer perceptron includes
a net of such critical regions within it. The trajectory of vanilla stochastic gradient
learning is trapped in such critical regions many times before it reaches the optimum
solution. This is known as the plateau phenomena. See Fig. 12.12 for an example of
learning curves.

Fig. 12.12 Plateaus L t( )

t
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12.2.5 Natural Gradient Learning Is Free of Plateaus

The plateau phenomena are given rise to by the singularities. Let us consider a simple
case of (12.114), where the horizontal line (z-axis) in Fig. 12.7 is the critical region
and all the points in this line are equivalent. The Riemannian length is 0 along this line
and the Riemannian metric degenerates in this direction. The inverse of the Fisher
metric diverges in this direction to infinity at R. The gradient of the cost function is
also 0 in this direction because all the points in R are equivalent. Therefore, the natural
gradient, ∇̃l = G−1∇l, is 0 multiplied by infinity at the singular points. Because of
this, the natural gradient takes an ordinary value even in a very small neighborhood
of R.

Cousseau et al. (2008) analyzed the dynamics of natural gradient learning near
singularity when the teacher ζ0 is in R. After complicated calculations,

u̇ = −η

2

(
1 − z2

)
u, (12.153)

ż = η

2

(
1 − z2

)
z (12.154)

is derived in the one-dimensional case. This shows that the dynamics converges to
R in the linear order. Hence, no retardation takes place.

When ζ0 is outside R, the trajectory is trapped in plateaus in the case of ordinary
stochastic gradient learning. However, in the case of natural gradient learning, no
retardation takes place, because the Riemannian metric is 0 along the Ro-direction
so that all the points are reduced to a single point. That is, the trajectory enters a
point in R and goes out immediately not staying within it. This is well understood
by considering the trajectory in M̃ .

In M̃ , R reduces to the single singular point, and all the other points in M̃ are
regular, having a non-degenerate Riemannian metric. Even in a very small neighbor-
hood of R, G−1∇l takes ordinary values. Hence, a critical slowdown does not occur.
To show this, Cousseau et al. (2008) used the blow-down technique of algebraic
geometry. They introduced a new coordinate system μ = (δ, γ),

δ = (
1 − z2

)
u2, (12.155)

γ = z
(
1 − z2

)
u3, (12.156)

when u is one-dimensional. All the points in singular region R is mapped to a single
point μ = (0, 0). The Fisher information G takes ordinary values even in a small
neighborhood of R except for (0, 0) at which it is not defined. They showed that

〈∇l〉 = Gμ (12.157)
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Fig. 12.13 Learning curves

0
0

3.5

3

2.5

1.5

0.5

1

3

20050 100

E
xp

ec
te

d 
L

os
s

LearningStep

Standard Gradient
Adaptive Natural
Gradient

150

holds in this coordinate system when the teacher is in R. Hence, the natural gradient
learning dynamics becomes very simple,

μ̇ = −ημ, (12.158)

in a neighborhood of R, when the teacher is inside R. When the teacher is outside R,
the trajectory enters R, that is, μ = 0 without retardation, and then escapes from it
immediately. It is interesting to see that, starting from various initial points, the tra-
jectories once enter R and then go out. The basin of attraction of R has a finite major,
although the trajectories leave it immediately (see Fig. 12.11). This is a typical Milnor
attractor. The new coordinate system μ, using the blow-down technique, is useful. It
should be remarked that absolute Hessian dynamics have the same characteristics.

See Fig. 12.13 for examples of the learning curves of the adaptive natural gradient
learning method compared to the ordinary back-propagation method.

12.2.6 Singular Statistical Models

A statistical model M = {p(x, ξ)} is regular when it satisfies the two conditions:

(1) The parameter ξ belongs to an open set in a Euclidean space.
(2) The Fisher information matrix exists and is non-singular.

In this case, n score functions

ui (x, ξ) = ∂ log p(x, ξ)

∂ξi
, i = 1, . . . , n (12.159)
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are linearly independent and the tangent space Tξ is spanned by them. The standard
asymptotic theory of statistics holds, as is highlighted by the Cramér–Rao theorem.
However, the theory is violated in a singular statistical model.

There are many singular statistical models. One type is the case in which the
Fisher information matrix degenerates at singularities. A mixture model

p (x,w, v) =
∑

vi p (x,wi ) ,
∑

vi = 1, vi ≥ 0, (12.160)

where p(x,w) is a regular statistical model specified by w, belongs to this class. The
MLP belongs to this class. When p(x,w) is a Gaussian distribution with varying
mean and variance, it is called a Gaussian mixture model. The changing time model
(sometimes called the Nile River model) and the ARMA model in time series also
belong to this type.

Another type deals with the case where the Fisher information matrix diverges to
infinity. A typical example is the location model written as

p(x, ξ) = f (x − ξ), (12.161)

where f (x) is a function having a finite support and its derivative is not 0 at the
boundaries. The unknown parameter is the mean value ξ. A typical example is the
uniform distribution over [ξ, 1 + ξ]. We do not discuss this case, although its geom-
etry is interesting, because its metric is not Riemannian but Finslerian. We do not
have a good geometrical theory yet. See a preliminary study by Amari (1984).

For N observations from a probability distribution p(x, ξ), consider the log like-
lihood ratio divided by

√
N ,

1√
N

N∑
i=1

log
p (xi , ξ)

p
(
xi , ξ0

) . (12.162)

It is asymptotically subject to the χ2-distribution with n degrees of freedom, where n
is the dimension number of ξ, when M is regular. By analyzing its behavior, we can
prove that the maximum likelihood estimator is asymptotically best, unbiased and
Gaussian, the error covariance matrix of which is the inverse of the Fisher information
matrix divided by N asymptotically.

The maximum likelihood estimator is no more subject to the Gaussian distribu-
tion even asymptotically in a singular statistical model of the first type when the true
distribution is at a singular point. However, it is asymptotically consistent and its
convergence speed is in the order of 1/

√
N . It has been known for many years that

some statistical models are singular. Fukumizu (2003) proved that the log likelihood
(12.162) diverges to infinity in the order of log N and log log N in the cases of multi-
layer perceptrons and mixture models, respectively. There is a Japanese monograph
by Fukumizu and Kuriki (2004), which studies singular statistical models in detail.

Model selection is an important problem, which decides the number of hidden
neurons from observed data in the case of the multilayer perceptron. As is well



312 12 Natural Gradient Learning and Its Dynamics in Singular Regions

known, a model having a large number of free parameters fits the observed data
well. The training error decreases as the number of parameters increases. However,
the estimated parameters overfit and are not useful for predicting the behavior of
future data, because the generalization error increases as the number of parameters
increases beyond a certain value. There is an adequate number of parameters, which
should be decided from the observed data.

The Akaike Information Criterion (AIC) and Minimum Description Length
(MDL) are two well-known criteria for model selection. The Baysian Information
Criterion (BIC) is the same as MDL, although their underlying philosophies are
different.

Multilayer perceptrons and Gaussian mixtures are models of frequent use in appli-
cations. They are hierarchical singular models in which a lower degree model is
included in the critical region of a higher degree model. We need to decide an ade-
quate degree, that is, the number of parameters from the observed data. AIC and
MDL are frequently used for this purpose without the singular structure being taken
into account. There have been many discussions concerning which criteria are to be
used, AIC or MDL. Both AIC and MDL are derived by using the maximum likeli-
hood estimator, assuming that it is asymptotically Gaussian with covariance matrix
1/N times the inverse of the Fisher information. However, it is not Gaussian when
the true parameter is in the critical region. When the true distribution is in a smaller
model, it is in a critical region of a larger model. So neither MDL nor AIC are valid
in such hierarchical models. They need to be modified. We should take account of
corrections due to the singularity. In the case of multilayer perceptrons, the penalty
term of AIC should be log N times the number of parameters, instead of twice the
number of parameters. This comes from the asymptotic property of log likelihood.
Watanabe (2010) proposed a new information criterion taking the singular structure
into account.

12.2.7 Bayesian Inference and Singular Model

Bayesian inference presumes a prior distribution π(ξ) on the parameters ξ of a
statistical model. For a family of probability distributions M = {p(x, ξ)}, the joint
probability of ξ and x is given by

p(x, ξ) = π(ξ)p(x|ξ). (12.163)

Therefore, the conditional distribution of ξ, conditioned on the observed training
data is

p (ξ |x1, . . . , xN ) = π(ξ)
∏N

i=1 p (xi |ξ )∫
π(ξ)

∏
p (xi |ξ) dξ

. (12.164)
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Its logarithm divided by N is

1

N
log p (ξ |x1, . . . , xN ) = 1

N
log π(ξ) + 1

N

∑
log p (xi |ξ ) + c, (12.165)

where c is a term not depending on ξ. The maximum posterior estimate is its maxi-
mizer,

ξ̂M AP = arg max
1

N
log p (ξ |x1, . . . , xN ) . (12.166)

As is shown in (12.165), a penalty term due to the Bayesian prior distribution is
added to the loss function, which is the negative of the log prior probability.

The effect of the prior distribution decreases as the number of the training examples
N increases in a regular statistical model, as is seen from (12.165). The maximum a
posteriori estimator (MAP) converges to the maximum likelihood estimator in this
case. However, a singular statistical model has different characteristics.

Let us consider a smooth non-zero prior in a singular model like the multilayer
perceptron. It includes the critical region R which is a union of subspaces, including
an infinite number of points. Such a region is reduced to one point in the space of
the outputs functions M̃ . Hence, a uniform prior (improper prior) on the parameter
space M is not uniform on M̃ . The prior of a singular point is an integration of
prior probabilities over an equivalence class R, so that the prior distribution of M̃
is singular, because singular points in M̃ have an infinitely large prior probability
measure compared to a regular point.

The parameter space Mn of a perceptron including n hidden neurons is included
in Mn+1 as a submanifold. But Mn is included in Mn+1 as a critical region, because
it is given by vi = 0, |wi | = 0 or wi = w j in Mn+1. Hence, when we consider a
smooth non-zero prior in Mn+1, a singular point M̃n+1 collects prior probabilities of
infinitely many points in a critical region of Mn+1.

When we take the maximum a posteriori estimator, a model having a smaller
number of parameters is advantageous because of the singular prior. Hence, the
Bayesian MAP has a tendency to select a smaller model, automatically selecting an
adequate model, although there is no guarantee that this is optimal.

Watanabe and his school (Watanabe 2001, 2009) have studied the effects of sin-
gularity in Bayesian inference by using modern algebraic geometry. The theory uses
deeper knowledge of mathematics and is beyond the scope of the present monograph.

Remarks

The present chapter focuses on the natural gradient method in a Riemannian manifold.
Since many engineering problems are formulated in a Riemannian manifold, the
natural gradient is useful. We have treated on-line and batch learning procedures and
shown that the natural gradient method demonstrates excellent performance.

The multilayer perceptron uses the gradient method (back-propagation) in a Rie-
mannian manifold of parameters. It is a constituent of deep learning, so its dynami-
cal performance should be studied carefully. However, the parameter space includes



314 12 Natural Gradient Learning and Its Dynamics in Singular Regions

widely spread singular regions in which the Fisher metric degenerates. Hence it is
not a regular statistical model but is a singular statistical model. We have studied the
dynamics of back-propagation learning based on the vanilla gradient, showing its
bad performance due to singularities. The natural gradient method is free from such
flaws both for the Fisher metric and the absolute Hessian metric. This characteristic
is retained in the K-FAC approximation (Martens and Grosse 2015). However, it
remains as a problem to be studied how the dynamics of learning behaves in a neigh-
borhood of singularity when the true model is not in the singular region. We will be
able to show by using the blow-down technique that the trajectory is not trapped in
the singularity. We have also studied the statistical problem related to singularities.

There are other interesting topics related to the natural gradient in a Riemannian
manifold. One may use any Riemannian metric, such as the Killing metric in Gl(n)

and the absolute Hessian metric (Dauphin et al. 2014). Girolami and Calderhead
(2011) presented the MCMC method in a Riemannian manifold by using the natural
gradient. Reinforcement learning also uses the natural gradient in a policy manifold
which is Riemannian. See, e.g., Kakade (2001), Kim et al. (2010), Roux et al. (2014),
Peters and Schaal (2008), Thomas et al. (2013). Optimization in the stochastic relax-
ation regime is another area where natural gradient learning is effective (Malagò
and Pistone 2014; Malagò et al. 2013, Hansen and Ostermeier 2001). One impor-
tant problem is to evaluate the inverse of the Fisher information or its approximation
effectively. See Martens (2015) and Martens and Grosse (2015). The adaptive natural
gradient method is one solution.

The natural gradient method is a first-order gradient method in a Riemannian
manifold and is different from a second-order method such as the Newton method.
We can further extend the natural gradient method to the natural Newton method,
natural conjugate gradient method, etc. in a Riemannian manifold. See Edelman
et al. (1998), Honkela et al. (2010) and Malago and Pistone (2014).



Chapter 13
Signal Processing and Optimization

In the real world, signals are mostly stochastic. Signal processing makes use of
stochastic properties to find the hidden structure we want to know about. The present
chapter begins with principal component analysis (PCA), by studying the correla-
tional structure of signals to find principal components in which the directions of
signals are widely spread. Orthogonal transformations are used to decompose signals
into non-correlated principal components. However, “no correlation” does not mean
“independence” except in the special case of Gaussian distributions. Independent
component analysis (ICA) is a technique of decomposing signals into independent
components. Information geometry, in particular semi-parametrics, plays a funda-
mental role in this. It has stimulated the rise of new techniques of positive matrix
decomposition and sparse component analysis, which we also touch upon. The opti-
mization problem under convex constraints and a game theory approach are briefly
discussed in this chapter from the information geometry point of view. The Hyvärinen
scoring method shows an attractive direction to be studied further from information
geometry.

13.1 Principal Component Analysis

13.1.1 Eigenvalue Analysis

Let x be a vector random variable, which has already been preprocessed such that
its expectation is 0,

E[x] = 0. (13.1)

The original version of this chapter was revised: The incomplete texts have been updated.
The correction to this chapter is available at https://doi.org/10.1007/978-4-431-55978-8_14
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Then, its covariance matrix is

VX = E
[
xxT

]
. (13.2)

If we transform x into s by using an orthogonal matrix O,

s = OT x, (13.3)

the covariance matrix of s is given by

VS = E
[
ssT

] = OT VX O. (13.4)

Let us consider the eigenvalue problem of VX ,

VX o = λo. (13.5)

Then, we have n eigenvalues λ1, . . . ,λn,λ1 > λ2 > . . . > λn > 0 and correspond-
ing n unit eigenvectors o1, . . . , on , where we assume that there are no multiple eigen-
values. (When there exist multiple eigenvalues, rotational indefiniteness appears. We
do not treat such a case here.) Let O be the orthogonal matrix consisting of the eigen-
vectors

O = [o1 . . . on] . (13.6)

Then, VS is a diagonal matrix

VS =
⎡

⎢
⎣

λ1

. . .

λn

⎤

⎥
⎦ (13.7)

and the components of s are uncorrelated,

E
[
si s j

] = 0, i �= j. (13.8)

13.1.2 Principal Components, Minor Components
and Whitening

Signal x is decomposed into a sum of uncorrelated components as

x =
n∑

i=1

si oi . (13.9)
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Fig. 13.1 Principal
components s1, s2, . . .

. .. ... .

. .
. ..

. .... .
. ... .

s2

x2
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x1

Since the variance of si is λi , s1 has the largest magnitude on average, s2 the second,
and finally sn has the smallest magnitude. See Fig. 13.1. We call s1 the (first) prin-
cipal component of x, which is obtained by projecting x to o1. The first k largest
components are given by s1, . . . , sk . We call the subspace spanned by k eigenvectors
o1, . . . , ok the k-dimensional principal subspace. The vector

x̃ =
k∑

i=1

si oi (13.10)

is the projection of x to the principal subspace.
The dimensions of x are reduced by the projection, keeping the resultant vector

as close to the original one as possible in the sense that the magnitude of the lost part

L = 1

2
E

⎡

⎣

∣∣
∣∣∣
x −

k∑

i=1

si oi

∣∣
∣∣∣

2
⎤

⎦ (13.11)

is minimized. So the principal components are used for approximating x with a small
number of components, reducing the dimensions.

Similarly, the k minor components are given by sn−k+1, . . . , sn , which are projec-
tions of x to oi , i = n − k + 1, . . . , n. The subspace spanned by on−k+1, . . . , on , is
called the k-dimensional minor subspace. The projection of x to the minor subspace
is given by

˜̃x =
n∑

i=n−k+1

si oi . (13.12)
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This is the maximizer of

L = 1

2
E

⎡

⎣

∣∣
∣∣∣
x −

k∑

i=1

si oi

∣∣
∣∣∣

2
⎤

⎦ . (13.13)

Note that the minor components of VX are the principal components of V−1
X , because

the eigenvalues of V−1
X are 1/λn, 1/λn−1, . . . , 1/λ1. The eigenvectors of V−1

X are the
same as those of VX , but the order is reversed as on, . . . , o1.

Let us rescale the magnitudes of n eigenvectors to give a new set of basis vectors

õi = √
λi oi , i = 1, . . . , n. (13.14)

Then, x is written in the new basis as

x =
∑

s̃i õi , (13.15)

where

s̃i = 1√
λi

si , (13.16)

so that
E
[
s̃i s̃ j

] = δi j . (13.17)

This implies that the covariance matrix of s̃ is the identity matrix

VS̃ = I. (13.18)

The transformation of x to s̃ is called whitening of x. This naming originates from
the fact that, when we deal with time series x(t), t = 1, 2, 3, . . ., the transformation
(13.15) changes the time series x(t) into white noise series s̃(t).

Since VS̃ is the identity matrix, it is invariant if we further transform s̃ by using
an arbitrary orthogonal matrix U as

˜̃s = Us̃. (13.19)

Hence, whitening is not unique and there remains the indefiniteness of rotation, i.e.,
a further transformation by U. In factor analysis, this fact is known as the indefinite-
ness of rotation. In order to dissolve the indefiniteness, we need to use higher-order
statistics by assuming that the signals are not Gaussian. This is the motivation for
discussing independent component analysis (ICA) in the next section.
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13.1.3 Dynamics of Learning of Principal and Minor
Components

When N examples x1, . . . , xN are observed as data D, we estimate the covariance
matrix by

V̂X = 1

N

∑
xT

i xi (13.20)

and find the principal components by calculating its eigenvalues and eigenvectors.
When examples are given one by one, we use a learning algorithm. We begin with a
simple case of deriving the first principal component o1. Let w be the candidate of
the first principal eigenvector, satisfying

|w|2 = 1. (13.21)

Let
y = w · x (13.22)

be the projection of x to w. Then the loss function to be minimized is

L = 1

2
|x − yw|2 (13.23)

under the constraint (13.21). By using the Lagrangian multiplier, the stochastic gra-
dient method of obtaining the principal component is given by

w(t + 1) = w(t) + y(t)x(t) − {y(t)}2 w(t). (13.24)

This was derived by Amari (1977) as a special case of neural learning, because the
relation (13.22) is regarded as the output of a linear neuron. The same algorithm was
discovered by Oja (1982) and was generalized to obtain the k-dimensional principal
subspace (Oja 1992).

Let W be an n × k matrix consisting of k orthogonal unit column vectors
w1, . . . ,wk ,

W = [w1w2 . . . wk] , (13.25)

satisfying
WT W = Ik, (13.26)

where Ik is the k × k unit matrix. The set of all such matrices forms a manifold
Sn,k , called the Stiefel manifold. The projection of x to the subspace spanned by
w1, . . . ,wk is

x̃ = WWT x =
∑

yiwi , (13.27)
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where
yi = wi · x. (13.28)

For obtaining the k-dimensional principal subspace spanned by the column vectors
of W, the loss function to be minimized is

L(W) = 1

2
E
[∣∣x − WWT x

∣∣2
]
. (13.29)

The gradient descent learning equation for W is

wi (t + 1) = wi (t) + yi (t)x(t) −
∑

j

yi (t)y j (t)w(t), i = 1, . . . , k. (13.30)

Its averaged version in continuous time is

Ẇ(t) = VX W(t) − WWT VX W, (13.31)

where˙denotes the time derivative d/dt .
The solution w1, . . . ,wk of learning Eqs. (13.30) or (13.31) converges to the

subspace spanned by k principal eigenvectors. However, each wi does not correspond
to the eigenvectors oi , although the principal subspace is spanned by w1, . . . ,wk .

In order to obtain the k principal eigenvectors, Xu (1993) introduced a diagonal
matrix

D =
⎡

⎢
⎣

d1

. . .

dk

⎤

⎥
⎦ , (13.32)

satisfying d1 > . . . > dk and modified (13.31) as

Ẇ(t) = VX W(t)D − W DWT VX W. (13.33)

This algorithm gives the principal eigenvectors wi = oi .
It appears that a similar algorithm would be applicable to the problem of obtaining

the minor component subspace. We need to find W that maximizes (13.29). If we
use gradient ascent instead of gradient descent, the algorithm would be

Ẇ = −VX W + WWT VX W. (13.34)

However, this does not work. Why (13.34) does not work had been a puzzle.
Both algorithms (13.31) and (13.34) work well when W is limited in the Stiefel

manifold Sn,k . The manifold Sn,k is a submanifold of Mn,k , which is the manifold
of all n × k matrices. When we solve (13.34) or its stochastic version numerically,
W(t) deviates from Sn,k because of numerical errors. Algorithms (13.31) and (13.34)
define flows Ṁ in the entire Mn,k , where M(t) ∈ Mn,k , when W is replaced by M. The
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Mn,k

Sn,k

Mn,k

Sn,k

(a) (b)

Fig. 13.2 Flow in a principal subspace, b minor subspace

flow is closed in Sn,k , that is, Ṁ ∈ Sn,k when M ∈ Sn,k . Sn,k is a stable submanifold of
the flow (13.31) in Mn,k . Hence, when a small fluctuation occurs in W and it deviates
from Sn,k into Mn,k , it automatically returns to Sn,k (Fig. 13.2a). However, in the case
of the flow (13.34) for minor components, Sn,k is not stable in Mn,k and W leaves
Sn,k due to the small deviation (Fig. 13.2b). This is the reason why the algorithm
(13.34) does not work.

Consider two modified differential equations in Mn,k due to Chen et al. (1998),

Ṁ(t) = VX MMT M − MMT VX M, (13.35)

Ṁ(t) = −VX MMT M − MMT VX M. (13.36)

Then, we can prove that the submanifold Sn,k is neutrally stable with regard to both
of the flows. Therefore, we can use (13.35) to obtain the principal components and
(13.36) to obtain the minimal components. The on-line learning versions of (13.35)
and (13.36) are

ṁi (t) = ±
∑

j

{(
mi · m j

) (
m j · x

)
x − (mi · x)

(
m j · x

)
m j
}
, (13.37)

where mi is the i th column vector of M.
The dynamics (13.35) and (13.36) possess interesting invariants. Let

M(t) = W(t)D(t)U(t) (13.38)

be the singular decomposition of M(t), where W(t) is an element of Sn,k consisting
of k orthogonal unit vectors, U(t) is a k × k orthogonal matrix and D is a k × k
diagonal matrix with diagonal entries d1, . . . , dk .

Lemma 13.1 (1) MT (t)M(t) is an invariant of (13.35) and (13.36), MT (t)M(t) =
MT (0)M(0).

(2) D(t) is an invariant of (13.35) and (13.36), D(t) = D(0).
(3) U(t) is an invariant of (13.35) and (13.36), U(t) = U(0).
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We omit the proof (see Chen et al. 1998). We immediately obtain the algorithm
of Xu (1993) by using an initial condition D(0) = diag {d1, . . . , dk} and rewriting
(13.35) in terms of W(t). When k = n, both (13.35) and (13.36) give the Brockett
flow (Brockett 1991), where the cost function is

L(M) = ±tr
(
MMT V

)
. (13.39)

This is the natural gradient flow in the manifold of the orthogonal matrices (see Chen
et al. 1998).

Since Sn,k is neutrally stable in Eqs. (13.35) and (13.36), numerical errors may
accumulate. Chen and Amari (2001) proposed the following equations

Ṁ(t) = (
VX MMT M − MMT VX M

)+ M
(
D2 − MT M

)
, (13.40)

Ṁ(t) = − (
VX MMT M − MMT VX M

)+ M
(
D2 − MT M

)
, (13.41)

where D is a positive diagonal matrix related to the initial value of M,

M(0) =

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

d1

. . .

dk

0
...

0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (13.42)

Sn,k is stable both under (13.40) and (13.41), so both the principal eigenvectors and
minor eigenvectors are extracted stably by the respective equations, which differ only
in signature.

13.2 Independent Component Analysis

Consider the problem of decomposing vector random variable x into n independent
components,

x =
n∑

i=1

si ai , (13.43)

such that si are independent random variables and {a1, . . . , an} is a new set of basis
vectors. We consider the case where n independent component signals s1, . . . , sn

exist under an adequate basis. When x is Gaussian, PCA is successful for performing
this job. However, there are infinitely many such decompositions due to rotational
indefiniteness, as stated in the previous section. Moreover, when x is non-Gaussian,
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Fig. 13.3 a Uniform distribution P(s); b Its linear transformation p(x)

PCA does not work for this purpose. This is because, even if no correlations exist
among n signals s1, . . . , sn , this does not imply that they are independent.

We give a simple example. Let s1 and s2 be two independent signals, where both
s1 and s2 are subject to the uniform distribution over [−0.5, 0.5]. They are distributed
uniformly over the square (Fig. 13.3a). We construct their mixtures x = (x1, x2)

T by

x1 = s1, (13.44)

x2 = s1 + 2s2. (13.45)

Then, x is uniformly distributed in a parallelepiped (see Fig. 13.3b). Its covariance
matrix is

VX =
[

1 1
1 5

]
, (13.46)

of which the eigenvectors are different from the original s1 and s2 axes. The PCA
solution gives non-correlated components but they are not independent. So we need
other methods to decompose x into independent components. Higher-order statistics
beyond the covariance is useful for solving the problem.

An illustrative example of ICA is the cocktail party problem. There are n persons
in a cocktail party room who are speaking independently. Let si (t) be the voice
of person i at time t . m microphones are placed in the party room, so that each
microphone records a mixture of voices of n persons. Let x j (t) be the sound recorded
by microphone j at time t . See Fig. 13.4. They are written as

x j (t) =
∑

A ji si (t), x(t) = As(t), (13.47)

where A ji is a coefficient of mixing depending on the distance between person i
and microphone j . The problem is to recover the sounds s(1), s(2), . . . of all the
persons from the recorded mixtures x(1), x(2), . . ., without any knowledge of A ji .
Here we assume that the numbers of persons and microphones are the same, n = m.
When n < m, we first apply PCA to x, projecting it to the n-dimensional principal
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Fig. 13.4 n persons and m
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subspace. Then, the problem reduces to the case of m = n. When m < n, we need
techniques of sparse signal processing.

We assume that A is a regular n × n matrix. When A is known, the problem is
trivially solved by

y(t) = A−1x(t), (13.48)

and y(t) is equal to the original s(t). However, A or A−1 is unknown. We transform
x by using a matrix W as

y(t) = Wx(t), (13.49)

and check if n components of y in time series y(1), . . . , y(T ) are independently
distributed or not. If they are not independent, we modify W such that the degree
of non-independence decreases. To this end, we need to define the degree of non-
independence of n random variables y1, . . . , yn . Since it is a function of W, we can
apply the stochastic gradient descent or the natural gradient descent method to obtain
W that recovers the independent signals.

Before defining the degree of non-independence, we note the indefiniteness of
the solution. As is known, the independent components are recovered only when all
the components of s except for one are non-Gaussian. Further, the order of signals
s1, . . . , sn is not recovered, since any permutation of n independent signals keeps
their independence. Moreover, the magnitude of si is not recovered, because, when
s1, . . . , sn are independent, c1s1, c2s2, . . . , cnsn are independent for any constants
c1, . . . , cn . Hence, the independent components are recovered to within the scales
and order.

We formulate the problem mathematically. Let ki (si ) be the probability density
function of the i th independent component si , where we assume that

E [si ] = 0. (13.50)

Then, the joint probability density of s is

k(s) =
∏

ki (si ) . (13.51)
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For y determined from (13.49), the joint probability density is written as

pY ( y; W) = |WA|−1 k
(
A−1W−1 y

)
. (13.52)

Here, we used the general formula that probability density function p(x) changes to

pY ( y) =
∣∣∣∣
∂ y
∂x

∣∣∣∣

−1

p(x), (13.53)

when x is transformed to y as
y = f (x). (13.54)

The KL-divergence from pY ( y) to k( y),

DK L [pY : k] =
∫

pY ( y) log
pY ( y)
k( y)

d y, (13.55)

would be used as a degree of non-independence. This would be a good choice if we
knew k(s). However, we do not know k(s) and what we know is only the fact that k(s)
is decomposed into the product of unknown ki (si ). We use n arbitrary independent
distributions,

q( y) =
∏

qi (yi ) (13.56)

and define

D [pY : q] =
∫

pY ( y) log
pY ( y)
q( y)

d y (13.57)

as a function to show the degree of non-independence. This choice is reasonable as
follows.

We consider the manifold of all the probability distribution

S = {p( y)} (13.58)

to understand the situation geometrically. We define the submanifold SI of all the
independent distributions

SI =
{

p( y)
∣∣
∣p( y) =

∏
pi (yi ) , pi are arbitrary density functions

}
, (13.59)

which is an e-flat submanifold of S. It includes both k( y) and q( y). Another sub-
manifold we consider is

SW = {pY ( y; W)} , (13.60)

which is parameterized by W. For each W, we have a distribution pY ( y; W) given
by the transformation of y = Wx. It is not a flat submanifold. See Fig. 13.5.
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Fig. 13.5 SI e-flat
submanifold of independent
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We use a loss function

Lk(W) = DK L
[

pY ( y; W) : k( y)
]
, (13.61)

when we know k(s). SW and SI intersect at W = A−1 and the loss function L is 0 at
this point. However, we do not know k(s), so we use

L(W) = DK L
[

pY ( y; W) : q( y)
]

(13.62)

by using an adequately chosen q (Bell and Sejnowski 1995). We can show that
SW and SI intersect orthogonally. In spite of this, we cannot apply the Pythagorean
theorem, because SW is not m-flat. However, because of the orthogonality, we show
that W = A−1 is a critical point of L . It is a local minimum, saddle or local maximum
depending on the choice of q . The stability of the critical point depends on q and the
m-embedding curvature of SW at q = k. When q is close to k, A−1 is certainly a global
minimum. We neglect the indefiniteness of W concerning scales and permutations
in the present discussions, but the situation is the same for all equivalent W.

We should remark that there are many loss functions other than (13.62). By mixing
independent s1, . . . , sn , the central limit theorem suggests that the distribution of x
approaches a jointly Gaussian distribution. Hence, the degree of non-Gaussianity
can be used as a loss function. The higher-order cumulants of y vanish when y
is Gaussian, so that the sum of the absolute values of the third- and fourth-order
cumulants play the role of a loss function. We may use other measures of non-
Gaussianity as a loss function. See Hyvärinen et al. (2001) and Cichocki and Amari
(2002). The following analysis is common to all such loss functions.

The stochastic descent on-line learning algorithm is given by

Wt+1 = Wt − ε
∂

∂W
DK L

[
pY ( yt ) : q( yt )

]
. (13.63)
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The loss function is written as

DK L
[

pY ( y) : q( y)
] =

∫
pY ( y) log

pY ( y)
q( y)

d y

= −H(Y ) − E
[
log q( y)

]
, (13.64)

where

H(Y ) = −
∫

pW ( y) log pW ( y)d y (13.65)

is the entropy of y expressed as a function of W. We see

H(Y ) = H(X) + log |W|. (13.66)

In order to calculate the gradient of the instantaneous loss

l( y, W) = − log |W| − log q( y; W) (13.67)

with respect to W, where H(X) is neglected because it does not depend on W, we
consider a small change of l( y, W) due to a small change of W, from W to W + dW.

We have

d log |W| = log |W + dW| − log |W| = tr
(
dWW−1

)
. (13.68)

Similarly, we have

d log qi ( y) = q ′
i (yi )

qi (yi )
dyi . (13.69)

We put

ϕi (yi ) = −q ′
i (yi )

qi (yi )
. (13.70)

Further, from
d y = (dW)x, (13.71)

we have, for ϕ( y) = [ϕ1 (y1) , . . . ,ϕn (yn)]
T ,

d log q( y) = −ϕ( y)T dWW−1 y. (13.72)

Hence, we have

dl( y, W) = −tr
(
dWW−1)+ ϕ( y)T dWW−1 y, (13.73)

from which the gradient of the instantaneous loss l with respect to W, ∂D/∂Wi j , is
calculated by using the component form.
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In order to obtain the natural gradient, we need to introduce a Riemannian metric
in the manifold Gl(n) of matrices. Let dW be a small line element, which is written as

dW =
∑

dWi j Ei j , (13.74)

where Ei j is a matrix whose (i, j) element is 1 and all the other elements are 0. They
form a basis in the tangent space. We consider the Lie group structure of Gl(n). W
is mapped to the identity matrix by multiplying W−1 from the right,

WW−1 = I. (13.75)

We also map a nearby point W + dW by multiplying W−1 from the right, giving

(W + dW)W−1 = I + dWW−1. (13.76)

Hence, a small line element dW in the tangent space of Gl(n) at W is mapped to

dX = dWW−1 (13.77)

in the tangent space at I. See Fig. 13.6.
We define the magnitude of dX at I simply by

〈dX, dX〉 = tr
(
dXdXT

) =
∑(

dXi j
)2

. (13.78)

A Riemannian metric is defined by defining the magnitude of dW at the tangent space
at W. We use the Lie group invariance such that the magnitude does not change by

Fig. 13.6 Mapping of TW
to TI
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the right multiplication of W−1. Then, the magnitude of dW is defined by that of the
corresponding dX,

〈dW, dW〉W = 〈dX, dX〉I. (13.79)

This is rewritten as

〈dW, dW〉 = tr
{

dWW−1
(
dWW−1

)T
}

, (13.80)

which is called the Killing metric. The length of a tangent vector is invariant by
multiplying a matrix from the right.

One may wonder if there is a coordinate transformation of W,

X = X(W) (13.81)

from which dX is derived by

dX = ∂X
∂W

· dW. (13.82)

Unfortunately, there is no such coordinate transformation. We can define dX but it
is not integrable, that is, the integration of dX

X
(
W′)− X(W) =

∫ W′

W
dX (13.83)

from W to W′ depends on the path connecting W and W′. So we do not have a coor-
dinate system X in Gl(n) such that d Xi j are increments along new coordinate curves.
Such virtual coordinates X are called a non-holonomic coordinate system, in which
only dX is defined. This non-holonomic basis of the tangent space is convenient for
introducing a Riemannian metric to Gl(n) and defining the natural gradient.

The small change (13.73) of l is written in terms of dX as

dl = −tr(dX) + ϕ( y)T dX y. (13.84)

This is written in the components as

dl

d Xi j
= −δi j + ϕi (yi ) y j . (13.85)

Since the inner product 〈dX, dX〉 is Euclidean, as is seen from (13.78), it is the
natural gradient due to the Killing metric. The increment of W is written as

ΔXi j = −ε
{
δi j − ϕi (yi ) y j

}
, ∇Xl = −ε

(
I − ϕ( y) yT

)
(13.86)

by using dX, where ∇X is the gradient with respect to X. By using (13.77), this is
rewritten in terms of the gradient with respect to W as
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∇W l = −ε
(
I − ϕ( y) yT

)
W. (13.87)

Because of this, the natural gradient has an invariant property that the convergence
of learning dynamics is the same whatever the true W is. The stability does not depend
on W, either. These are desirable properties given by Cardoso and Laheld (1996)
and Amari et al. (1996).

13.2.3 Estimating Function of ICA: Semiparametric
Approach

The probability density function of observed x can be written as

p (x, W, k) =
∏

i

ki

⎛

⎝
∑

j

Wi j x j

⎞

⎠ . (13.88)

In this statistical model, the unknown parameters include not only W but also n func-
tions k1 (s1) , . . . kn (sn), which are the probability densities of the independent source
signals. The probability distribution of x is specified by n × n matrix W, which are
the parameters of interest to be estimated, and also by n functions k1 (s1) , . . . kn (sn),
which are nuisance parameters of function-degrees of freedom. Therefore, ICA is a
semi-parametric statistical problem (Amari and Cardoso 1997).

An estimation function is a matrix F(x, W) which satisfies

EW
[
F
(
x, W′)]

⎧
⎨

⎩
= 0, W′ ≈ W,

�= 0, W′ �≈ W.
(13.89)

Here, the expectation is taken with respect to p(x, W), and W ≈ W′ implies that W
and W′ are equivalent to within the scales and permutations. The estimating equation
is given by

T∑

t=1

F( y(t)) =
T∑

t=1

F {Wx(t)} = 0. (13.90)

A sequential estimation is realized by the learning equation

Wt+1 = Wt − εt F (xt , Wt ) , (13.91)

which is expected to converge to the solution of (13.90), although the convergence
is not necessarily guaranteed.

Information geometry gives a general class of estimating functions. See Amari
(1999) for details. Let ϕ( y) be an arbitrary vector function of y. Then, an effective
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class of estimating functions is generated from

F(x, W) = F(y) = I − ϕ( y) yT , (13.92)

including arbitrary vector function ϕ. Let R(W) be a linear reversible transformation
of matrices acting on F as

F̃(x, W) = R(W)F(x, W). (13.93)

R is a tensor having four indices and written in the component form as

F̃i j (x, W) =
∑

k,l

Ri j
kl Fkl(x, W). (13.94)

The estimating equation is the same for F and RF, because

∑

t

RF (x(t), W) = 0 (13.95)

is equivalent to (13.90).
The on-line learning equation using RF is

Wt+1 = Wt − εt R(Wt )F. (13.96)

Although, the equilibrium point does not depend on R, its stability depends on R
and so does the speed of convergence. Therefore, we need to choose ϕ( y) and R(W)

carefully.
Once ϕ( y) is chosen, the Newton method is applicable to solve the iterative

procedure. From the estimating Eq. (13.90), we have

∑

t

F (xt , W + ΔW) =
∑

F (xt , W) +
∑ ∂F

∂W
◦ ΔW = 0, (13.97)

where xt = x(t) and ◦ is used for taking the trace of matrix multiplication. Using

ΔXt = ΔWW−1
t , (13.98)

we define the operator

J = E

[
∂F
∂X

]
= E

[
∂F
∂W

]
WT . (13.99)

The Newton method is written as

Wt+1 = Wt − εt J−1 (Wt ) F
(

yt

)
. (13.100)
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Therefore, the Newton method is derived by choosing R in the following way:

R(W) = J−1(W). (13.101)

The operator J is a fourth-order tensor, and we can calculate it explicitly, but it
depends on the true k(s), which we do not know.

An estimating function F̃(x, W) is said to be standard when it satisfies

J̃ = E

[
∂F̃
∂W

]

WT = identity operator. (13.102)

Given an estimating function F, we have its standard version by

F̃(x, W) = J−1F(x, W). (13.103)

The learning equation using a standard estimating function corresponds to the Newton
method. The Hyvärinen fast algorithm (Hyvärinen 2005) uses a standard estimating
function.

Since the standard estimating function using ϕ( y) is written in the form of

F̃ = I − αϕ( y) yT + β yϕT ( y), (13.104)

where α and β are adequate parameters, we can use an adaptive method of choosing
them from the data. The separating W is stable when we use a standard estimating
function, because the Newton method is applied.

One of surprising results is the following “super efficiency”. We define the covari-
ance of the recovered signal at t by

Vi j (t) = E
[
yi (t)y j (t)

]
, i �= j. (13.105)

Then, it converges to 0 when the source separation is successful.
We have the following super efficiency results:

Theorem 13.1 When
E [ϕi (si )] = 0, (13.106)

by using the standard estimating function F, the covariances decrease in the order
of 1/t2 for the natural gradient learning,

Wt+1 = Wt − 1

t
F (xt , Wt ) (13.107)

and in the order of η2 when the learning constant η is fixed,

Wt+1 = Wt − ηF (xt , Wt ) . (13.108)
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The condition (13.106) is satisfied in the following two cases:

(1) ϕi (si ) = − d

dsi
log ki (si ) , (13.109)

(2) ki (si ) is an even function and ϕi (si ) is an odd function. (13.110)

See Amari (1999) for detailed discussions and proofs.

Remark When independent source signals si (t) have temporal correlations such that

E [si (t)si (t − τ )] = ci (τ ), (13.111)

which are not 0 for some τ > 0, we can use this information even if we do not
know ci (τ ) explicitly. The previous results are valid even in this case, but we have
more efficient methods by taking the existence of temporal correlation into account.
The joint diagonalization of the delayed covariance matrices is one good idea. See
Cardoso and Souloumiac (1996). The method works well even when the source
signals are Gaussian.

It is possible to develop a method of estimating functions even in this case. We
obtain a general form of estimating functions, which includes arbitrary temporal
filters to be applied to the observed signals x(t). The joint diagonalization is a special
example of the estimating function method. See Amari (2000) for details.

13.3 Non-negative Matrix Factorization

Given a series of observed signals x(1), . . . , x(T ), let us arrange all of them in an
n × T matrix form,

X = [x(1) . . . x(T )] . (13.112)

ICA searches for the basis vectors {a1, . . . , an}, which form an n × n mixing matrix

A = [a1 . . . an] (13.113)

and x is decomposed as

x(t) = As(t) =
∑

si (t)ai , (13.114)

such that s1, . . . , sn are independent. (13.114) is represented as

X = AS (13.115)

in the matrix notation.
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There are many cases where x is not a mixture of independent sources. ICA does
not work in such cases. On the other hand, there are cases where the components si

are all non-negative. Visual images are such signals, where s(i, j) are the brightness
of an image at pixel (i, j).

When all the components of s are non-negative, they are distributed on the first
quadrant of the signal space, which is a cone. When signals are transformed linearly
by A as

x = As, (13.116)

x’s are distributed in another cone, because linear transformation A transforms one
cone to another cone. Hence, from a number of observations x(t), we can find the
cone in which the x’s sit (Fig. 13.7). The mixture matrix A is recovered from the cone
of X. When the elements of A are also non-negative, those of X are non-negative.
Therefore, the problem is formulated as follows:

Non-negative matrix factorization (NMF): Given non-negative matrix X, factorize
it as the product of two non-negative matrices A and S,

X = AS. (13.117)

We define a divergence D[M : N] between two non-negative matrices M and N.
Then, the loss function of decomposition is given by

L(A, S) = D[X : AS]. (13.118)

The Frobenius matrix norm

D(A, B) = 1

2

∑

i,t

|ait − bit |2 (13.119)

s1

sn xn

x1

x=AsA

Fig. 13.7 A transforms the positive quadrant to a positive cone
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is a divergence of frequent use. This is the square of the Euclidean norm and is sym-
metric with respect to A and B. Another divergence is the KL-divergence defined by

DK L [A, B] =
∑

i,t

{
ait log

ait

bit
− ait − bit

}
(13.120)

Other divergences such as α-, β- and (α,β)-divergences are also used on their own
merits. See Cichocki et al. (2011).

The alternating minimization is a useful procedure to find the minimum of two
variables L(A, S). We fix A(t) at time t, t = 1, 2, . . ., and minimize L(A(t), S) with
respect to S. Let the minimizer be S(t). We then fix S(t) and minimize L(A, S(t))

with respect to A. The minimizer is written as A(t+1). We repeat this procedure until
convergence.

The gradient descent method is used to obtain the minimizer of the loss function.
However, we need to take the non-negativity of A and S into account. The conven-
tional gradient descent method does not satisfy this requirement and components of
matrices would become negative in the procedure.

The exponential gradient descent (Kivinen and Warmuth 1997) is proposed to
overcome this difficulty. Its procedure is as follows:

S(t+1) = S(t) exp

{
−η

∂L

∂S

}
, A(t+1) = A(t) exp

{
−η

∂L

∂A

}
, (13.121)

where η is a learning constant. By using the logarithm, we have

log S(t+1)
i t = log S(t)

i t − η
∂L

∂Sit
, log A(t+1)

i t = log A(t)
i t − η

∂L

∂ Ait
. (13.122)

Hence, (13.121) is the gradient descent applied to log S and log A. When D is the
Frobenius norm (13.119), we have

∂L

∂ Ait
= [−XST + ASST

]
i t ,

∂L

∂Sit
= [−AT X + AT AS

]
i t . (13.123)

In this analogy, we have the following algorithm, originally proposed by Lee and
Seung (1999):

log A(t+1)
i t = log A(t)

i t + log
(
XST

)
i t − log

(
ASST

)
i t , (13.124)

log S(t+1)
i t = log S(t)

i t + log
(
AT X

)
i t − log

(
AT AS

)
i t . (13.125)

There are many algorithms for NMF. See Cichocki et al. (2011), for example. NMF
is further generalized to non-negative tensor factorization (NTF), where tensors are
quantities having more than two indices.
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13.4 Sparse Signal Processing

We have studied linear signal decomposition from x to s,

x = As =
n∑

i=1

si ai . (13.126)

This section deals with the case that they are mixtures of a very few non-zero com-
ponents, that is, a vector signal s is sparse. A signal s is said to be k-sparse when the
components of s are zero except for at most k components. When k is much smaller
than the dimension number n of s, it is called a sparse vector. We consider a typical
case that k is of the order log n or smaller, when n is large.

We interpret (13.126) such that x is a linear combination of n basis vectors
a1, . . . , an and a basis ai is activated when si is non-zero. Only a small number
of basis vectors are activated in the sparse case. We assume that x is generated
sparsely but do not know which basis vectors are activated. Let m be the dimension
number of vector x. We regard the m components of x as m measurements concern-
ing an unknown signal s, where a1, . . . , an are known. When m > n, (13.126) is
overdetermined, that is, the number m of equations is larger than the number n of
unknowns. We usually assume that the observations are contaminated by noise, such
that

x = As + ε, (13.127)

where ε is a noise vector, and we search for the least–squares solution.
When m < n, the equation is underdetermined. There are infinitely many solutions

satisfying (13.126) even when it is noise contaminated. A conventional solution is the
generalized inverse that minimizes the Euclidean norm among all possible solutions.
When we know that s is sparse, we have a different solution. This was first noted
by Chen et al. (1998). The following surprising theorem is known (Donoho 2006;
Candes et al. 2006).

Theorem 13.2 When n and m are large, s is recovered correctly in most cases,
provided s is k-sparse and

m > 2k log n. (13.128)

Roughly speaking, when k is a constant, a constant multiple of log n observations
are enough to recover the n-dimensional s. Since a very small number of sensors are
enough, provided the original signal is sparse, the paradigm is called compressed
sensing (Donoho 2006; Candes and Walkin 2008). Such a paradigm has emerged
from statistics, ICA, signal processing and many related fields. It has grown to form
a very hot field. There are many monographs and papers on this topic, see, e.g., Elad
(2010), Eldar and Kutyniok (2012) and Bruckstein et al. (2009).
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13.4.1 Linear Regression and Sparse Solution

Let us formulate the linear regression problem

x = Aθ + ε, (13.129)

where x is the observation vector, A = (
Ai j

)
is a known design matrix, θ is the factor

or explanatory vector to be determined and ε is a noise vector. We use θ instead of
s for the purpose of emphasizing that θ is an e-affine coordinate system. The loss
function to be minimized is

ψ(θ) = 1

2

∑
|x − Aθ|2 . (13.130)

We use ψ(θ) for the loss function in this subsection, because it plays the role of a
convex function defining dually flat structure. This is the negative of the log likelihood
when the noises are independent Gaussian. Since ψ is a quadratic function in the case
of (13.130), by defining

G = AT A, (13.131)

we have

ψ(θ) = 1

2
θT Gθ − xT Aθ + c, (13.132)

where c is a constant. When m > n, G is regular in general and the optimal solution
is

θ∗ = G−1AT x. (13.133)

When m < n, G is singular and there are infinitely many solutions in this underde-
termined case. Let s0 be a solution. Then, for any null vector satisfying

Gn = 0, (13.134)

s0 + n is a solution. The solution that minimizes the L2-norm is given by

θ∗ = A†x, (13.135)

where A† is the generalized inverse defined by

A† = AT
(
AAT

)−1
. (13.136)

However, this solution is not sparse and almost all components are non-zero.
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The sparsest solution is the one that minimizes the number of non-zero compo-
nents

L0(θ) =
n∑

i=1

(
θi
)0

. (13.137)

However, this is a combinatorial problem and computationally difficult to solve for
large n. One may use the L1-norm instead of L0-norm,

L1(θ) =
n∑

i=1

∣
∣θi
∣
∣ , (13.138)

to obtain a sparse solution (Ishikawa 1996). There are many studies concerning when
the minimum L1-norm solution is identical to the minimum L0-norm solution. It is
now known that the solutions of the two problems coincide when

m ≈ 2k log n (13.139)

for a randomly generated A with high probability. See, e.g., Candes et al. (2006).

13.4.2 Minimization of Convex Function Under L1
Constraint

We generalize the linear regression problem and study the problem of minimizing
a general convex function ψ(θ) under the L1-constraint. See Hirose and Komaki
(2010). The constraint is given by

L(θ) =
∑∣∣θi

∣∣ = c. (13.140)

We define a region of θ by

Bc =
{
θ
∣∣∣
∑

|θi | ≤ c
}

. (13.141)

As c decreases, the constraint becomes stronger and finally when c = 0, it includes
only θ = 0, the extremely sparse solution. See Fig. 13.8.

We have assumed in (13.129) that the noise is Gaussian. When it is not Gaussian,
the negative of the log likelihood function, ψ(θ), is convex but is not a quadratic
function. Another typical example is the logistic regression. In this case, given input
xi , the response yi is binary, taking values 0 and 1. Its probability is given by

Prob {yi = y} = exp
{

yθ · xi − ψ̃ (θ · xi )
}

, (13.142)
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Fig. 13.8 Convex set Bc and
m-projection of θ∗ to it

*
c

Bc
*

m-projection

.

where
ψ̃ = 1 + exp {θ · xi } . (13.143)

The loss function is the negative of log probability of the correct answer,

ψ(θ) = −
∑

yi xi · θ +
∑

ψ̃ (θ · xi ) . (13.144)

This is convex and is strictly convex when m > n.
The problem is the minimization of

f (θ) = ψ(θ) + λL(θ), (13.145)

where λ is the Lagrange multiplier. We begin with the overdetermined case because
it is simpler. The underdetermined case can be treated similarly, as will be stated
later (see Donoho and Tsaig 2008). In the overdetermined case, there is a unique
optimum θ∗ minimizing L(θ), that satisfies

∇ψ
(
θ∗) = 0. (13.146)

This is the solution corresponding to a large enough c and is not sparse.
We introduce the dually flat geometry, where the e-affine coordinates are θ and

the dual coordinates (m-flat coordinates) are given by

η = ∇ψ(θ). (13.147)

The Riemannian metric is
G(θ) = ∇∇ψ(θ). (13.148)
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The divergence from θ to θ′, derived from ψ, is

D
[
θ : θ′] = ψ(θ) − ψ

(
θ′)− ∇ψ

(
θ′) · (θ − θ′) . (13.149)

Therefore, from (13.146), we see that

D
[
θ : θ∗] = ψ(θ) − const. (13.150)

Hence, minimizing ψ(θ) is equivalent to minimizing the divergence from θ to θ∗,
that is the dual divergence from θ∗ to θ. Since the area Bc defined by the constraint
(13.141) is e-convex, the following is immediate from the projection theorem.

Theorem 13.3 The solution θ∗
c that minimizes ψ(θ) in the area Bc is given by the

m-projection of θ∗ to Bc. The projection is unique.

The analytical equation for θ∗
c is obtained, by differentiating (13.145) with respect

to θ,
∇ψ

(
θ∗

c

) = −λ∇L
(
θ∗

c

)
. (13.151)

Since the solution is the m-projection of θ∗ to Bc, the m-geodesic connecting θ∗ and
θ∗

c is orthogonal to the boundary of Bc if it lies on a smooth surface of Bc (Fig. 13.8).
The gradient ∇L(θ) is the normal vector of the surface of L , which is the supporting
hypersurface of Bc at this point. However, since convex set Bc is a polyhedron, it is
not differentiable at low-dimensional faces, such as vertices, edges, etc., where some
components satisfy

θi = 0. (13.152)

There are infinitely many supporting hypersurfaces at a non-differentiable point. The
set of the normal vectors of the supporting hypersurfaces is called the subgradient
of L at that point (Fig. 13.9).

We give an explicit form of the subgradient. Let A(θ) be the set of indices for
which θi �= 0,

A(θ) = {
i
∣
∣θi �= 0

}
. (13.153)

It is called the active set of θ, because θi is active, that is, not 0, for i ∈ A(θ). Then,
the subgradient is written as

(∇L)i =
⎧
⎨

⎩
∂i L(θ) = sgn θi , i ∈ A,

εi , εi ∈ [−1, 1] , i ∈ Ā,
(13.154)

where εi may take an arbitrary value in [−1, 1].
There is only one m-geodesic passing through a regular boundary point of Bc

orthogonally. On the other hand, there are infinitely many m-geodesics which pass
through a non-regular point and their tangent directions belong to the subgradient.
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Fig. 13.9 Gradient and
subgradient of L
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Therefore, there exist a larger number of points θ∗ that are mapped to a non-regular
point by the m-projection as the sparsity becomes large. This explains why a sparse
solution is obtained by the L1 regularization. See Fig. 13.9.

13.4.3 Analysis of Solution Path

Let us call θ∗
c the solution path, considering c as a parameter along the path. It

connects the origin 0 and the optimal point θ∗ as c changes from 0 to a large value.
Hence, the solution path gives sparse solutions of which the sparsity is specified
by c. LASSO is proposed for this purpose (Tibshirani 1996). Since the Lagrangian
multiplier λ is determined as a monotone function λ(c) of c, we may also regard
λ as another parameter of the path (Efron et al. 2004). The dual coordinates of the
optimal solution satisfy

η∗
c = −λ∇L

(
θ∗

c

)
. (13.155)

By differentiating it with respect to c, the path satisfies

G
(
θ∗

c

)
θ̇

∗
c = −λ̇c∇L

(
θ∗

c

)
, (13.156)

which is the equation to show the direction θ̇
∗
c of the solution path. See Amari and

Yukawa (2013) and Yukawa and Amari (2015).
Let us trace the path θ∗

c starting from a sufficiently large c, where θ∗
c = θ∗. As c

decreases, the path follows (13.156) as long as the active set A
(
θ∗

c

)
does not change.

But at a point where some θ∗i

c becomes newly 0, the active set A changes and the
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direction θ̇
∗
c of the path changes discontinuously, because ∇L of (13.154) changes,

although the path itself is continuous.
We divide the indices into two parts, one belonging to the active set A and the

other to its complement (inactive set) Ā, and use the mixed coordinates

θ =
(
θA,θ Ā

)
(13.157)

η =
(
ηA,η Ā

)
. (13.158)

Then, we have the following lemma.

Lemma 13.2 The solution path satisfies

η∗A
c = −λ(c)sA, θ∗ Ā

λ = 0, (13.159)

while the active set does not change, where s = ∇L (θc) is the vector of which the
components are sgn θ∗i

c .

The following least equiangle theorem of Efron et al. (2004) holds even in our
general case.

Theorem 13.4 (Least Equiangle Property) The direction θ̇
∗
c of the solution path has

the following properties:
(1) For any coordinate axis belonging to the active set A, the angle between θ̇

∗
λ

and the coordinate axis is the same,

∣
∣∣〈θ̇∗

λ, ei 〉
∣
∣∣ =

∣
∣∣〈θ̇∗

λ, e j 〉
∣
∣∣ , i, j ∈ A, (13.160)

where ei is the tangent vector along the coordinate θi .
(2) For any axis belonging to Ā, the angle between θ̇

∗
λ and the coordinate axis is

larger than that of the axis belonging to A,

∣∣∣〈θ̇∗
λ, ei 〉

∣∣∣ <

∣∣∣〈θ̇∗
λ, e j 〉

∣∣∣ , i ∈ A, j ∈ Ā. (13.161)

Proof The angle between θ̇
∗
λ and any coordinate axis ei is calculated by the inner

product,
〈θ̇∗

λ, ei 〉 = η̇∗
λ · ei = η̇∗

λ,i . (13.162)

Since η̇∗
λ is proportional to ∇L

(
θ∗

λ

)
, whereas

∣
∣∇L

(
θ∗

λ

)∣∣
i = 1 (13.163)

for i ∈ A and
|∇L|i < 1 (13.164)
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for i ∈ Ā, (13.160) and (13.162) hold. The direction of θ̇
∗
λ changes only when i

changes from Ā to A. �

This is the principle of Least Angle Regressions (LARS) of Efron et al. (2004),
extended to the general class of convex optimization.

13.4.4 Minkovskian Gradient Flow

A gradient flow is the set of paths satisfying

θ̇c = −∇ f (θc) (13.165)

for some function f (θ). A gradient flow converges to a minimum of ψ when ψ is
bounded, and no oscillation occurs. We show that the solution path of the extended
LARS is a gradient flow under the Minkovskian gradient, which is defined in the
following (Amari and Yukawa 2013). The natural gradient of f (θ) is the direction
a in which the change of f is the largest. We define it by

∇̃ f (θ) = lim
ε→0

arg max
a

f (θ + εa) (13.166)

under the condition that the norm of a is kept constant. The natural gradient uses the
Riemannian norm. We consider the Lq -norm

‖a‖q =
∑

|ai |q , (13.167)

which is a Minkovskian norm. The L2-norm is a special case of the Minkovskian
norm. It is easy to see that the steepest direction is given by

ai = c |∂i f (θ)| 1
q−1 sgn {∂i f (θ)} , (13.168)

where c is a constant.
Since we are dealing with the L1-constraint, we define the Minkovskian gradient

with respect to the L1-norm by taking the limit of q approaching to 1 from the above.
We take the constant c as

c = 1

max
∣∣
∣ ∂
∂θi

f (θ)

∣∣
∣
. (13.169)

Then, the limit is

ai =
{

sgn {∂i f (θ)} , |∂i f | = max {|∂1 f | , . . . , |∂n f |} ,

0, |∂i f | is not the largest among all |∂1 f | , . . . , |∂n f | . (13.170)
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This is the Minkovskian gradient corresponding to the L1-norm. The Minkovskian
gradient of f is written as

a = ∇̃M f (θ). (13.171)

Its components are ±1 when the absolute values of ∂i f are maximal and 0 for all
the other components. See Amari and Yukawa (2013).

Consider the Minkovskian gradient flow,

θt+1 = θt − ε∇̃Mψ
(
θt) , (13.172)

starting from the origin in terms of the dual coordinates. This is the solution path
of our problem. The components of ∇̃Mψ

(
θ∗) are zero except for those indices that

give the maximal values of
∣
∣η∗

i

∣
∣, since η∗

i is the derivative of f (θ) with respect to i .
Hence, along the Minkovskian gradient flow, only the components η∗

i , which have the
largest absolute values change. We need to solve the equation in terms of the primal
coordinate system θ∗

c . Any components of θ∗
c will change subject to the equiangle

property.
We restate the LARS algorithm. Starting from the origin 0, we calculate the

Minkovskian gradient of ∇̃Mψ
(
θ∗) and pick up the index i∗,

i∗ = arg max
j

∣∣η∗
j

∣∣ . (13.173)

The active set consists of a single i∗. (We ignore cases where two or more indices
become the maximizer, but it is easy to consider such cases.) The path η∗

c proceeds in
this direction of the Minkovskian gradient as c increases, while

∣
∣η∗

ci∗
∣
∣ is the smallest.

As c becomes larger, another index j∗ joins the set of the indices of the maximizer,
satisfying ∣

∣η∗
ci∗
∣
∣ = ∣

∣η∗
cj∗
∣
∣ . (13.174)

We then add this to the active set, and the Minkovskian gradient is calculated for the
new active set. In this way, the active set increases stepwise, until the path converges
to θ∗. The Minkovskian gradient flow explains the properties of LARS in terms of
the geometry of the gradient flow.

13.4.5 Underdetermined Case

We have so far studied the overdetermined case, where the unique unconstrained
optimum θ∗ exists. In the underdetermined case of m < n, ψ(θ) is not strictly convex
and the solution of

∇ψ(θ) = 0 (13.175)
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is not unique. The solutions form a submanifold. The problem is to obtain the one that
has the minimum L1-norm. The Hessian G is not strictly positive-definite in this case.
Hence, the Riemannian metric does not exists. The transformation (13.147) from θ to
η exists but is not bijective and the inverse transformation is not necessarily unique.

In spite of these differences, the Eq. (13.151) obtained from the Lagrangian holds.
Hence, the equation of the solution path (13.156) holds as well. We can prove the
least–angle theorem in a similar way. Therefore, the solution path is given by a
Minkovskian gradient flow starting at the origin θc = 0. We can use the same algo-
rithm for solving the problem in the underdetermined case. See Donoho and Tsaig
(2008) in the regression case.

13.5 Optimization in Convex Programming

Mathematical programming is a problem of finding the optimum solution under
various constraints. A typical example is linear programming (LP), which minimizes
a linear function under constraints given by linear inequalities. More generally, there
is a problem of minimizing a linear loss function in a convex region. See Nesterov and
Nemirovski (1993). This is called convex programming. A typical example of it is
positive-semidefinite programming. An inner point method searches for the optimum
solution sequentially inside the convex region. Since a convex region defines a dually
flat structure, information geometry is useful in understanding these problems.

13.5.1 Convex Programming

Let us consider a manifold M having a coordinate system θ and a bounded convex
region Ω . A differentiable function ψ(θ) is called a barrier function when it is convex
and diverges to infinity at the boundary ∂Ω of the region Ω . Let

∑

i

Ai (ω)θi − b(ω) = 0 (13.176)

be the supporting hypersurface of Ω at point ω ∈ ∂Ω (Fig. 13.10). The convex region
Ω is defined by

Ω =
{

θ

∣∣
∣
∣∣

∑

i

Ai (ω)θi − b(ω) ≥ 0 for all ω ∈ ∂Ω

}

. (13.177)

Since
− log

{∑
Ai (ω)θi − b(ω)

}
(13.178)
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Fig. 13.10 Convex region
Ω and supporting
hyperplane at ω

.ω

diverges to infinity at the boundary, the convex function

ψ(θ) = −
∫

∂Ω

w(ω) log
{∑

Ai (ω)θi − b(ω)
}

dω (13.179)

is a barrier function.
The supporting hypersurfaces in the case of LP are

∑
Aκiθ

i − bκ ≥ 0, κ = 1, . . . , m. (13.180)

Hence, Ω is a polyhedron and the convex function is

ψ(θ) = −
∑

κ

log
(∑

Aκiθ
i − bκ

)
. (13.181)

The cost function to be minimized is

C(θ) =
∑

ciθ
i . (13.182)

The positive semi-definite programming is the problem of obtaining the positive
semi-definite matrix X that minimizes the linear function

C(X) = tr(CX), (13.183)

where C is a constant matrix. The set of all positive semi-definite matrices forms a
cone. We impose the constraints which X must satisfy:

tr (AκX) − bκ = 0, κ = 1, . . . , m, (13.184)
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where Aκ are constant matrices. The region defined by (13.184) is convex. This type
of problem is also called the cone programming problem, appearing in many fields
of research, e.g., in control theory. See Ohara (1999).

The barrier function for positive-definite matrices is given by

ψ(X) = − log det |X|. (13.185)

The geometrical structure is the same as the invariant geometry of Gaussian distri-
butions with mean 0 and covariance matrix X.

13.5.2 Dually Flat Structure Derived from Barrier Function

Since a barrier function ψ(θ) is convex, it gives a dually flat structure to the manifold
M , where θ is e-affine coordinates and its Legendre transform

η = ∇ψ(θ) (13.186)

is m-affine coordinates.
The Riemannian metric G is given by

gi j (θ) = ∂i∂ jψ(θ) (13.187)

(Nesterov and Todd 2002). Hence,

ηi = −
∫

Ai (ω)
∑

Ak(ω)θk − b(ω)
dω, (13.188)

gi j (θ) =
∫

Ai (ω)A j (ω)
{∑

Ak(ω)θk − b(ω)
}2 dω (13.189)

in the case of (13.181).
The interior point method is a sequential search for the solution that minimizes

C(θ), by changing θ in the decreasing direction of C inside Ω . The natural gradient
gives the steepest direction of C and is given by

∇̃C(θ) = G−1(θ)∇C(θ). (13.190)

The LP problem uses a linear function

C(θ) = c · θ (13.191)
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as a cost function. By using continuous time, the natural gradient flow is

θ̇(t) = −εG(θ)−1c, (13.192)

where ε is a constant. The affine-projection method of Karmarkar solves this by using
the discrete time step,

Δθ = −ε∇̃C(θ) = −εG−1(θ)c. (13.193)

It is known that this gives an algorithm of polynomial-time complexity. See Tanabe
(1980).

The dynamic equation (13.192) reduces to the simple equation given by

η̇(t) = −εc (13.194)

in the dual coordinates. The solution is a m-geodesic,

η(t) = −εt c + c0. (13.195)

Although the solution is very simple in the dual coordinates, we need the solution
in the θ coordinate system. Hence, the algorithm is not simple in the θ coordinates
and the transformation between θ and η is expensive. It is popular to solve the
problem in the primal-dual formulation by using the Newton method.

13.5.3 Computational Complexity and m-curvature

In order to evaluate the number of steps to reach the optimal solution, we analyze
the solution path. To this end, consider the following loss function parameterized by
t :

L(θ, t) = tC(θ) + ψ(θ), (13.196)

where the barrier function is added to the cost function. Let θ∗(t) be the minimizer
of L(θ, t). This defines a path inside Ω parameterized by t , which cannot cross the
boundary of Ω . As t → ∞, the effect of the barrier function disappears, so θ∗(t)
converges to the optimum solution θ∗ of the original problem.

By differentiating (13.196) with respect to θ, we obtain the solution path in the
dual coordinates,

η∗(t) = −t c. (13.197)

We call the point η∗(0) = 0 the center of Ω . The solution path is a dual geodesic
connecting the center and the optimum solution η∗. This is the steepest descent path
starting at the center by using the natural gradient.
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The path is an m-geodesic but is curved in the e-coordinates θ. When the curvature
of the path is small, we can solve the discretized path equation by taking a large step
size, but when the curvature is large, we need to use a small step size. Therefore, the
number of steps depends on the curvature of the path. Kakihara, Ohara and Tsuchiya
(2012) evaluated the necessary number of steps to obtain the optimum solution within
a preassigned accuracy in terms of the embedding curvature of the path.

13.6 Dual Geometry Derived from Game Theory

13.6.1 Minimization of Game-Score

Statistical inference can be regarded as a game against Nature, where the player
estimates the probability distribution Nature has assigned. Nature shows a realized
value of random variable x subject to the true probability distribution p(x). The
player chooses an action a from the set A of actions. Let l(x, a) be the instantaneous
loss when a is chosen for x . The expected loss is

L(p, a) = E[l(x, a)] =
∫

p(x)l(x, a)dx . (13.198)

See Topsoe (1979), Grünwald and Dawid (2004), Dawid (2007) and Dawid et al.
(2012) for a detailed formulation.

In the case of estimation, the player’s action is to choose a probability distribution
q(x) from a set of actions consisting of probability distributions, A = {q(x)}. We
call the loss l(x, q) a game-score in the case of probability distributions and denote
it by S(x, q),

S(x, q) = l(x, q). (13.199)

When N independent observations x1, . . . , xN are available, the game-score is written
as

S (x1, . . . , xN , q) = E p̂[S(x, q)] = 1

N

N∑

i=1

S (xi , q) , (13.200)

where p̂(x) is the empirical distribution

p̂(x) = 1

N

N∑

i=1

δ (x − xi ) . (13.201)

The conventional loss used in statistics is the log loss, so the corresponding game-
score is

S(x, q) = − log q(x). (13.202)
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Minimization of the game-score (13.200) under log loss (13.202) gives the maximum
likelihood estimator. We study another type of the game-score in the next subsection,
called the Hyvärinen score (Hyvärinen 2005) given by

S(x, q) = l̈(x) + 1

2

{
l̇(x)

}2
, (13.203)

where
l(x, q) = log q(x) (13.204)

and l̇ etc. are differentiations with respect to x .
For two probability distributions p(x) and q(x), let us define the game-relative-

entropy by
HS[p : q] = Ep[S{x, q(x)}]. (13.205)

The game-entropy of p(x) is given by HS[p : p]. When the game-score is given by
(13.202), it is the Shannon entropy.

A game-score is proper when

HS[p : q] ≥ HS[p : p] (13.206)

holds for any p and q . It is strictly proper when the equality holds only for q = p.
We study a strictly proper game-score. In this case, we define the game-divergence
between p(x) and q(x) by

DS[p : q] = −HS[p : p] + HS[p : q]. (13.207)

This is the KL-divergence when the game-score is given by (13.202). We can derive
a dual geometrical structure {g,∇,∇∗} induced from the game-divergence (Dawid
2007) for any strictly positive game-score S(x, q). We call it the S-geometry, which
includes the invariant geometry as a special case of log loss.

Let us consider a parametric form of statistical model M = {p(x, ξ)}, where x is
a scalar or a vector. We show only a scalar case, but it is easy to generalize results to
the vector case. For a strictly proper game-score

S(x, ξ) = S {x, q(x, ξ)} , (13.208)

the divergence is written as a function of ξ and ξ′ as

DS
[
ξ : ξ′] = DS

[
p(x, ξ) : p

(
x, ξ′)] = E p(x,ξ)

[
S(x, ξ′) − S (x, ξ)

]
. (13.209)

Hence, from
∂

∂ξ′ DS
[
ξ : ξ′]|ξ′=ξ

= 0, (13.210)
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we have

Ep(x,ξ)

[
∂

∂ξ
S(x, ξ)

]
= 0. (13.211)

This shows that

s(x, ξ) = ∂

∂ξ
S(x, ξ), (13.212)

is an estimating function derived from game-score S. The estimating equation is

1

N

N∑

i=1

s (xi , ξ) = 0. (13.213)

This is equivalent to minimizing DS
[

p̂(x) : p(x, ξ)
]

for the empirical distribution
p̂(x).

We show that there are strict proper game-scores other than l(x, ξ) = − log
p(x, ξ). One type is derived from a Bregman divergence Dψ[p(x) : q(x)] given by

Dψ[p : q] =
∫ [

ψ {q(x)} − ψ {p(x)} + {p(x) − q(x)} ψ′ {q(x)}] dx, (13.214)

where ψ(q) is a strictly convex function. It is easy to see that this is a Bregman
divergence, and the related game-score is

S {x, q(x)} = ψ′ {q(x)} +
∫ [

ψ {q(y)} − q(y)ψ′ {q(y)}] dy. (13.215)

It reduces to the log score when

ψ(u) = −u log u. (13.216)

The estimating function in this case is

s(x, ξ) = ψ′′ {p(x, ξ)} ∂ξ p(x, ξ) − c(ξ), (13.217)

where
c(ξ) = E

[
ψ′′ {p(x, ξ)} ∂ξ p(x, ξ)

]
. (13.218)

Since Dψ is a Bregman divergence, a dually flat structure is introduced in the
manifold M = {p(x)}. As is seen from (13.214), the convex function is ψ(q), where
the θ-coordinates of q ∈ M are of function degrees of freedom,

θx (q) = q(x), (13.219)
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and the η-coordinates are
ηx (q) = ψ′ {q(x)} . (13.220)

The Riemannian metric and cubic tensor are derived from ψ.
The estimator ξ̂ derived from a game-score is consistent, because s(x, ξ) is an

estimating function. We study its efficiency. Let ξ be the true value and let us put

ξ̂ = ξ + Δξ, (13.221)

where ξ̂ is the estimator satisfying the estimating equation,

1

N

∑
s
(

xt , ξ̂
)

= 0. (13.222)

By the Taylor expansion, we have

1

N

∑
s (xt , ξ + Δξ) = 1√

N

1√
N

∑
s (xt , ξ) + 1

N

∑
∂ξs (xt , ξ) Δξ. (13.223)

Due to the central limit theorem, 1/
√

N of the first term of (13.223) converges to
a Gaussian random variable ε, the mean of which is 0 and the covariance is

V = E
[
εεT

] = E
[
s(x, ξ)s(x, ξ)T

]
. (13.224)

The coefficient of the second term converges, due to the law of large numbers, to

K(ξ) = E
[
∂ξs(x, ξ)

]
. (13.225)

Therefore, the estimation error is

Δξ = − 1√
N

K−1ε. (13.226)

The asymptotic error covariance of ξ̂ is

E
[
εεT

] = 1

N
K−1V

(
K−1)T

, (13.227)

which is larger than the inverse G−1 of the Fisher information matrix in general.
The loss of information or efficiency is analyzed as follows. Let us decompose

random variable s(x, ξ) in the direction of the score vector ∂ξl(x, ξ), which consists
of random variables representing the tangent vectors along the coordinate curves ξ,
and orthogonal to it,
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s(x, ξ) = c(ξ)
{
∂ξl(x, ξ) + a(x, ξ)

}
, (13.228)

E
[
a(x, ξ)∂ξl(x, ξ)T

] = 0. (13.229)

We may put c(ξ) = 1, since the estimating equation is the same for any c(ξ). Then,
we have

K(ξ) = E
[
∂ξ∂ξl(x, ξ) + ∂ξa(x, ξ)

]

= −G(ξ), (13.230)

because
0 = E [s(x, ξ)] = E

[
∂ξl(x, ξ) + ∂ξa(x, ξ)

]
(13.231)

and
E
[
∂ξl(x, ξ)

] = 0. (13.232)

The term a is explicitly given by

a(x, ξ) = s(x, ξ) − G(ξ)−1E
[
s(x, ξ)∂ξl(x, ξ)T

]
∂ξl(x, ξ). (13.233)

Hence, we have
V = G + E

[
a(x, ξ)a(x, ξ)T

]
(13.234)

and
E
[
εεT

] = G−1 + G−1AG−1, (13.235)

where
A = E

[
a(x, ξ)a(x, ξ)T

]
. (13.236)

Therefore, the asymptotic error covariance increases by GAG−1. The estimator is
Fisher efficient when and only when a(x, ξ) = 0.

13.6.2 Hyvärinen Score

Hyvärinen (2005, 2007) proposed an interesting game-score given by

S(x, q) = l̈(x) + 1

2

{
l̇(x)

}2
, (13.237)

where l(x) = log q(x) and ˙ denotes the differentiation with respect to x . When x is
a vector, it is

S(x, q) = Δl(x, ξ) + 1

2
|∇l(x, ξ)|2 , (13.238)
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where Δ is the Laplacian and ∇ is the gradient with respect to x. The related game-
entropy is

H [p(x)] = −1

2

∫
p(x)

{
l̇(x)

}2
dx (13.239)

and the divergence is

D [p(x) : q(x)] = Ep [S(x, q) − S(x, p)] . (13.240)

Lemma 13.3 The Hyvärinen divergence is rewritten as

D [p(x) : q(x)] = 1

2

∫
p(x)

{
d

dx
log p(x) − d

dx
log q(x)

}2

dx . (13.241)

Proof We calculate Ep [S(x, q)] by putting

l p(x) = log p(x), lq(x) = log q(x). (13.242)

Then

Ep [S(x, q)] =
∫

p(x)

{
l̈q(x) + 1

2

{
l̇q(x)

}2
}

dx

=
∫ {

− ṗ(x)l̇q(x) + 1

2
p(x)

{
l̇q(x)

}2
}

dx

= 1

2
Ep

[{
l̇q(x)

}2 − 2l̇q(x)l̇ p(x)
]
, (13.243)

where the formula of partial integration is used. Ep [S(x, p)] is calculated similarly,
and we have (13.241).

The Hyvärinen divergence is not a Bregman divergence and hence the geometry
derived from it is not dually flat. Note that it does not depend on the normalizing
constant of q, because

D[p(x) : cq(x)] = D[p(x) : q(x)] (13.244)

for any c. Hence, it can be used for estimation when the normalization factor is
difficult to calculate.

For parametric family of probability distributions p(x, ξ), the Hyvärinen estimat-
ing function is given by

s(x, ξ) = ∇S {x, p(x, ξ)} = ∂ξ l̈(x, ξ) + l̇(x, ξ)∂ξ l̇(x, ξ). (13.245)

It is a homogeneous estimating function, because it does not depend on the normal-
ization factor c(ξ) of a probability distribution. For example, an exponential family
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is written as
p(x,θ) = exp {θ · x + k(x) − ψ(θ)} , (13.246)

but l̇ and l̈ do not include ψ(θ). Hence, one can easily obtain an estimator without
calculating ψ(θ). Calculation of the normalization factor ψ is computationally heavy
in Bayesian inference, so the Hyvärinen score is useful in such a case.

We give a simple illustrative example.

Example 13.1 Consider a simple exponential family,

p(x, θ) = exp
{−θx3 − ψ(θ)

}
, θ > 0, x > 0. (13.247)

We can calculate ψ in this case as

ψ(θ) = 1

3
log θ + c. (13.248)

Therefore, the η-coordinate is

η = 1

3

1

θ
. (13.249)

The MLE is given by

θ̂mle = N

3
∑

x3
i

. (13.250)

The Hyvärinen score is
s(x, θ) = −6x − 9θx4. (13.251)

Hence, the related estimator is

θ̂ = 2

3

∑
xi∑
x4

i

, (13.252)

which is asymptotically unbiased but is not efficient, because the score s(x, θ) is not
included in the space of

∂θ log p(x, θ) = x3 − ψ′(ξ). (13.253)

The following theorem shows the case when the Hyvärinen estimator is Fisher
efficient. See Hyvärinen (2005).

Theorem 13.5 The Hyvärinen estimator is Fisher efficient for multivariate Gaus-
sian distributions and is not efficient for other distributions.

Proof Both s(x, ξ) and ∂ξl(x, ξ) are quadratic functions of x in the multi-variate
Gaussian case, ∂ξl(x, ξ) spanning all the quadratic functions of x. Hence, s(x, ξ) is
included in the space spanned by ∂ξl(x, ξ) and a(x, ξ) = 0. On the other hand, this
occurs only for multivariate Gaussian distributions. �
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Parry et al. (2012) and Hyvärinen (2007) extend the Hyvärinen score applicable
to the case of discrete x such as a graphical model. We show another new idea.

Consider the case where x is a discrete random variable having a graphical struc-
ture. When x′ and x are connected by a branch, x′ is a neighbor of x, x′ ∈ Nx , where
Nx is the set of neighbors of x. A typical example is a Boltzmann machine, where
x′ is a neighbor of x when one and only one component of x′ is different from x.
Hence, the graph is represented by an n-cube.

The graph Laplacian Δ is an operator, acting on function f (x) as

Δ f (x) = 1

|Nx |
∑

x′∈Nx

{
f (x) − f

(
x′)} , (13.254)

where |Nx | is the cardinality of Nx . It can be rewritten as

Δ f (x) =
∑

x′
C
(
x, x′) f

(
x′) , (13.255)

where

C
(
x, x′) =

⎧
⎨

⎩

1
|Nx | , x′ ∈ Nx,

−1, x′ = x,

0, otherwise.
(13.256)

An interesting property is shown in the following lemma.

Lemma ∑

x

Δ f (x)h(x) =
∑

f (x)Δ′h(x), (13.257)

where
Δ′ f (x) =

∑

x′
C
(
x′, x

)
f
(
x′) . (13.258)

When the graph is homogeneous, having constant |Nx |,

Δ′ = Δ. (13.259)

Proof From ∑

x

Δ f (x)h(x) =
∑

x,x′
f
(
x′)C

(
x, x′) h(x), (13.260)

(13.257) follows immediately.
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We define a new game score when x is discrete and the graph is homogenous,
that is, Δ = Δ′, by

S(x, p) =
{

Δp(x)

p(x)

}2

− 2Δ

{
Δp(x)

p(x)

}
. (13.261)

This does not depend on the normalization factor of p(x). The estimating function
s(x, ξ) is defined in the parametric case as

s(x, ξ) = ∇ξ S {x, p(x, ξ)} . (13.262)

This gives the estimating equation

∑
s (xi , ξ) = 0 (13.263)

not depending on the normalization factor.
The meaning of this score is given by the following theorem.

Theorem 13.6 The divergence derived from the score (13.261) is

D
[
ξ : ξ′] = Eξ

⎡

⎣
{

Δp(x, ξ)

p(x, ξ)
− Δp

(
x, ξ′)

p
(
x, ξ′)

}2
⎤

⎦ . (13.264)

Proof We calculate Eξ

[
S
{

x, p
(
x, ξ′)}] as before. However we use

∑

x

p(x, ξ)Δ

{
Δp

(
x, ξ′)

p
(
x, ξ′)

}

=
∑

x

Δp(x, ξ)
Δp

(
x, ξ′)

p
(
x, ξ′)

= Eξ

[
Δp(x, ξ)

p(x, ξ)

Δp
(
x, ξ′)

p
(
x, ξ′)

]

, (13.265)

instead of the formula of partial integration used in the continuous case. We then
have the theorem.

We can calculate the efficiency of the derived estimator by calculating a(x, ξ).

Remarks

The last chapter deals with miscellaneous subjects concerning signal processing.
PCA is an old subject but is still active. We have focused on the dynamics of learning
for PCA from the point of view of geometry. ICA is a relatively newly developed
subject, in which non-Gaussianity of distributions plays an important role. Infor-
mation geometry elucidates its structure. The natural gradient in the manifold of
matrices is useful for this purpose. Moreover, it is formulated as a semi-parametric
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statistical problem, so that a general form of estimating functions is given by infor-
mation geometry. We can stabilize and accelerate its learning dynamics by using the
Newton method in the manifold of matrices. We have further touched upon the NMF
problem.

Sparse signal processing is a hot topic on which many researchers are working.
We are not able to overview most of the excellent results in this field. Instead, we
have touched upon the minimization problem from the information geometry point
of view. The Minkovskian gradient is a new topic, reinterpreting the L1-constrained
minimization. The problem of minimization under L p(0 < p < 1) is another inter-
esting subject. See Xu et al. (2012), Yukawa and Amari (2015) and Jeong et al.
(2015), for example.

Convex programming is a big field in operations research. We discussed only
the interior point method, in which information geometry plays an interesting role.
Another important topic related to optimization is the stochastic relaxation frame-
work which is useful even for discrete optimization (Malagò et al. 2013), touched
upon in the previous chapter. We also touched upon an information geometry frame-
work given by game theory (Dawid 2007). The Hyvärinen score S(x, p) when x
is discrete is a new idea emerged at the last stage in preparing the monograph. The
dual geometry derived from the Hyvärinen score is an interesting subject in future
research.
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In the original version of the book, the following belated corrections have been
incorporated. The correction book has been updated with changes.

Corrections:

Page 15, line 4 from bottom: (2.12) has been updated to (1.52)
Page 17, line 3 from bottom: (1.57) has been updated to (1.60)
Page 21, Fig. 1.6: ηi and η j has been updated to θ∗

i and θ∗
j , respectively

Page 24, Eq. (1.112) has been updated to

Dψ(R : P) = Dψ(Q : P) + Dψ(R : Q)

Page 25, Eq. (1.114) has been updated to

Dψ(Q : P) + Dψ(R : Q) − Dψ(R : P) = (
θP − θQ

)(
θ∗

Q − θ∗
R

)

The updated version of these chapters can be found at
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C2 Correction to: Information Geometry and Its Applications

Page 25, Eq. (1.120) has been updated to

Dψ∗(R : P) = Dψ∗(Q : P) + Dψ∗(R : Q)

Page 33, line after (2.16): Insert This implies that the KL-divergence is the dual of
the canonical divergence derived from ψ .
Page 97, Eq. (4.150): 2π has been updated to (2π)n

Page 203, line 6 from top: (9.64) has been updated to (9.63)
Page 240, line 11 from top: Asmptotic has been updated to Asymptotic
Page 240, Eq. (11.46): n has been updated to N
Page 247, line 6 from top: Delete because of (11.69)
Page 330, line 4 from bottom: expected converge has been updated to expected to
converge
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Bayesian duality, 266
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Belief propagation, 249
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Boltzmann machine, 181, 268
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Convex function, 12
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Coordinate transformation, 4
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Deep learning, 292, 296
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Divergence, 9
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Dual connections, 131
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Dually flat manifold, 137
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Efficient, 173
Efficient score, 194
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First-order asymptotic theory, 173
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Gaussian mixture model, 180
Gaussian RBM, 275
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Integrated information, 152
Integration of weak machines, 261
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Invariant divergences, 52
Invariant Riemannian metrics, 52
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Kernel exponential family, 42
Kernel function, 246
Killing metric, 329
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Kronecker-factored approximate curvature,
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Kullback–Leibler (KL) divergence, 11

L
Large deviation, 60
Large deviation theorem, 61
Learning constant, 294
Least angle regressions, 343
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Legendre transformation, 16
Levi–Civita connection, 113, 125
Linear machine, 242
Linear system, 215
Loss of information by data reduction, 185

M
Machine learning, 231
MA model, 218
Manifold, 3
Margin, 243
Maximum entropy, 223
Maximum entropy principle, 45
Maximum likelihood estimator, 48
Mean field approximation, 254
Metric affine connection, 125
Milnor attractor, 310
Minimum description length, 312
Minimum entropy, 224
Minkovskian gradient, 343
Minor subspace, 317
Mirror descent method, 289
Misspecified model, 186

Mixed coordinate system, 144
Mixture family, 37
Moving-average model, 218
Multilayer perceptron, 292, 296
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Natural gradient, 283
Natural gradient learning method, 284
Natural parameter, 32
Natural policy gradient, 288
Negative entropy, 33
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Non-negative matrix factorization, 333
Nuisance parameter, 191
Nuisance tangent subspace, 201
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Observed point, 47
Observed submanifold, 180
On-line learning, 281
Overlapping singularity, 299

P
Parallel transport, 22, 118
Parameter of interest, 191
Plateau, 302
Plateau phenomena, 308
Policy natural gradient, 284
Polynomial kernel, 247
Positive-definite symmetric matrix, 96
Power spectrum, 217
Principal component, 317
Principal component analysis, 315
Principal subspace, 317
Prior distribution, 266
Projection theorem, 25, 143

R
RAS transformation, 160
RC curvature, 119
Reinforcement learning, 287
Restricted Boltzmann machine, 268
Riemann–Christoffel curvature tensor, 119
Riemannian connection, 113
Riemannian geometry, 109
Riemannian gradient, 283
Riemannian metric, 19
Riemannian structure, 10
Robust cluster center, 238



374 Index

S
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Semi-definite programming, 346
Shape parameter, 212
Singular point, 301
Singular prior, 313
Singular statistical models, 311
Singular structure, 296
Soft clustering, 236
Solution path, 341
Sparse vector, 336
Standard estimating function, 332
Standard f -divergence, 56
Stiefel manifold, 320
Stochastic descent learning method, 281
Stochastic relaxation, 286
Submanifold, 126
Sufficient statistic, 52
Super efficiency, 332
Support vector, 244

Support vector machine, 242
System complexity, 152

T
Tangent space, 19, 109
Tangent subspace of interest, 201
Temporal firing pattern, 211
Tensor, 114
Time series, 215
Total Bregman divergence, 238
Total least squares, 196
Training error, 280
Transfer function, 217

U
Unidentifiability, 298
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Voronoi diagram, 234
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